• 제목/요약/키워드: Co-electrolysis

검색결과 150건 처리시간 0.023초

알카라인 수전해 시스템 성능 특성 및 안전에 관한 연구 (A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System)

  • 박순애;이은경;이정운;이승국;문종삼;김태완;천영기
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.601-609
    • /
    • 2017
  • Hydrogen is a clean, endlessly produced energy and it is easy to store and transfer. So, hydrogen is regarded as next generation energy. Among various ways for hydrogen production, the way to produce hydrogen by water electrolysis can effectively respond to fossil fuel's depletion or climate change. As interest in hydrogen has increased, related research has been actively conducted in many countries. In this study, we analyzed the performance characteristics and safety of water electrolysis system. In this study, we analyzed the performance characteristics and safety of water electrolysis system. The items for safety performance evaluation of the water electrolysis system were derived through analysis of international regulations, codes, and standards on hydrogen. Also, a prototype of the overall safety performance evaluation station was designed and developed. The demonstration test was performed with a prototype $10Nm^3/h$ class water electrolysis system that operated stably under various pressure conditions while measuring the stack and system efficiency. At 0.7MPa, the efficiency of the alkaline water electrolysis stack and the system that used in this study was 76.3% and 49.8% respectively. Through the GC analysis in produced $H_2$, the $N_2$ (5,157ppm) and $O_2$ (1,646 ppm) among Ar, $O_2$, $N_2$, CO and $CO_2$ confirmed as main impurities. It can be possible that the result of this study can apply to establish the safety standards for the hydrogen production system by water electrolysis.

저온형 알칼라인 산소발생반응의 문제점과 perovskites촉매 개발 동향 (Various Problems in Oxygen-evolution Reaction Catalysts in Alkaline Conditions and Perovskites Utilization)

  • 이진구
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.182-188
    • /
    • 2019
  • Alternative energy sources to the systems using hydrocarbon fuels have been actively developed due to exhaustion of fossil fuels and issue of global warming by CO2. Fuel cells have attracted great attentions to solve these issues as electricity can be produced with product of clean H2O by using H2-O2 as a fuel. Besides, using reverse reactions make it possible to produce H2 and O2 gas from electrolysis of water. There are various fuel cells systems depending on the types of electrolyte, and in this mini-reviews, the main aim is to focus on perovskite oxides as a catalyst for oxygen-evolution reactions in alkaline electrolysis and its potential to application of alkaline electrolysis systems.

Electrolyte Addition for Enhanced Wastewater Treatment by Electrolysis using Cu Electrode

  • Kim, Woo-Yeol;Yun, Chan-Young;Son, Dong-Jin;Chang, Duk;Kim, Dae-Gun;Hong, Ki-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권1호
    • /
    • pp.35-42
    • /
    • 2017
  • In this study, the effect of electrolyte addition on the removal of organics and nutrients in electrochemical wastewater using a copper electrode, and the characteristics of the by-product of electrolysis were investigated. The removal of organics increased significantly as shorter reaction times upon the addition of chloride ion, and most of the electrolysis reaction was completed within 20 min. The reaction rate gradually increased in proportion to the $Cl^-$/COD ratio, whereas the highest removed mass of organic matter per mass of added electrolyte was observed at a $Cl^-$/COD ratio of 1. After the addition of electrolyte, significant removal of ammoniacal nitrogen was observed as a result of the enhanced generation of oxidizers such as hypochlorite. Excellent phosphorus removal was also achieved in a very short reaction time (within 2 min) by electro-coagulation. As the electrolysis progressed, the amount of by-product increased gradually, whereas a decrease of sludge volume index was observed after the addition of electrolyte. This indicated that the settling performance of the by-products was better, and their removal would be easily achieved.

제일원리 전산모사법을 이용한 폐양액 수전해용 코발트 산화물 촉매의 흡착 이온 특성 연구 (Investigating adsorption ion characteristics on cobalt oxides catalyst in electrolysis of waste alkaline solutions using ab-initio study)

  • 우주완;이종민;서민호
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.427-436
    • /
    • 2023
  • In the industry, it is recognized that human activities significantly lead to a large amount of wastewater, mainly due to the increased use of water and energy. As a result, the growing field of wastewater resource technology is getting more attention. The common technology for hydrogen production, water electrolysis, requires purified water, leading to the need for desalination and reprocessing. However, producing hydrogen directly from wastewater could be a more cost-effective option compared to traditional methods. To achieve this, a series of first-principle computational simulations were conducted to assess how waste nutrient ions affect standard electrolysis catalysts. This study focused on understanding the adsorption mechanisms of byproducts related to the oxygen evolution reaction (OER) in anion exchange membrane (AEM) electrolysis, using Co3O4 as a typical non-precious metal catalyst. At the same time, efforts were made to develop a comprehensive free energy prediction model for more accurate predictions of OER results.

해수 전기분해용 대전류 정류기의 설계 및 시뮬레이션 (Design and Simulation of High-Current Rectifier for Electrolysis of Seawater)

  • 김형운;김진영;조원우;김인동;노의철;배상범;고강우;강부녕
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.231-233
    • /
    • 2009
  • The plating equipment, water treatment system, electrolysis facility, etc need the high current and high power rectifier for their original purposes. So the paper investigates the applicable types of rectifiers and carries out their comparisons, and also suggest the practical design guidelines for a suitable candidate rectifier for low voltage high current high power applications.

  • PDF

전기분해와 공침법을 이용한 해수중의 납 제거 (Removal of Lead from Sea Water using Electrolysis and Coprecipitation Method)

  • 진홍성;이재호
    • 대한환경공학회지
    • /
    • 제32권2호
    • /
    • pp.149-154
    • /
    • 2010
  • 전기분해와 공침법을 이용한 해수 중의 납 제거 가능성에 대하여 실험하였다. 전기분해조는 음이온교환수지를 채운 격막으로 분리되었다. 전기분해가 진행됨에 따라 음극식의 pH는 상승하여 콜로이드 형태의 $Mg(OH)_2$$CaCO_3$이 생성되었다. 넓은 표면적을 가지는 콜로이드 입자는 납 이온을 흡착하여 침천되었다. 전류밀도를 변화시키면서 바닷물의 전기분해하였으며 바닷물에 남아있는 Mg, Ca, Pb의 양을 적정법과 ASV 방법을 이용하여 측정하였다. 전류밀도와 pH가 증가함에 따라 바닷물 중의 납은 대부분 효과적으로 제거되었다.

고온수전해용 전극물질 개발 (Development of prepareation technology of materials for high temperature electrolysis)

  • 서민혜;홍현선;강경훈;김종민;이성규;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.61-64
    • /
    • 2007
  • Ni/YSZ ($Y_{2}O_{3}-stabilized$ $ZrO_{2}$), Cu/YSZ and CuO/YSZ composite powder for a cathode material in high temperature electrolysis (HTE) was synthesized by a mechanical alloying method with Ni (or Cu, CuO, Co) and YSZ powder. Microstructure of the composite for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. And conductivity of electrode was measured, Cu/YSZ cermet showed the higher electrical conductivity value than Ni/YSZ.

  • PDF

전해조건에 따른 CoFeCu 함금박막의 조성, 우선방위 및 자기적 특성 (Composition and magnetic ProPerties of CoFecu alloys according to electrolysis conditions)

  • 예길촌
    • 한국표면공학회지
    • /
    • 제30권1호
    • /
    • pp.3-12
    • /
    • 1997
  • The composition, the preferred orientation and the magnetic properties of the CoFeCu alloys electrodepositen under various electrolysis conditions in sulfate baths ware investigated. As the D.C. current density increased, the Co content in alloy electrodeposits increased, while the Cu content decreased and Fe content remained content. The effect of magnetic field up to 300 Oe on the composition of alloys was negligible. The Cu content of the alloys deposited in pulse current increased noticeably with increasing off-time, while the Co and Fe content decreased. The coercivity of the alloys with 3.5 to 7.0wt.% Cu was 1.0 to 2.0 Oe, but increased noticeably above and below that composition. The application of magnetic field during deposition decreased the coercivity of alloys. The saturation flux density of the alloys with 3.5 to 5.0wt.% Cu was relatively high in the range from 16 to 20.7Gauss. The anisotropy field(HK) of the alloys deposited under the magnetic field(50∼300 Oe) ranged from 18 to 22 Oe. The alloys had fcc structure with (111) preferred orientation, whose distribution increased a little with increasing magnetic field.

  • PDF

수전해용 Ir/TiO2 산소 발생 촉매의 제조 및 성능 평가 (Synthesis and Evaluation of Ir/TiO2 OER catalyst for PEM water electrolysis)

  • 송민아;정혜영;이해지;최윤기;문상봉
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.471-477
    • /
    • 2016
  • In this research, the Ir supported $TiO_2$ (P25) catalyst was prepared by precipitation method for oxygen evolution reaction. The $Ir/TiO_2$ catalyst was synthesised by reduction reaction using reducing agent. Physiochemical characterizations of synthesized $Ir/TiO_2$ catalyst was studied by means of SEM, EDS mapping, TEM and XRD. The Electrochemical characterizations were tested by using the technique of CV and LSV by RDE and Potentiostat. Physicochemical properties were characterized with XRD where Iridium metal morphology and Ir(111) and Ir(222) peaks were founded. $Ir0.2Ru0.8O_2$ exhibited higher OER activity than $Ir0.5Ru0.5O_2$ followed by $Ir/TiO_2$ and $IrO_2$.

Performance Assessment of Electrolysis Using Copper and Catalyzed Electrodes for Enhanced Nutrient Removal from Wastewater

  • Kim, Woo-Yeol;Son, Dong-Jin;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.124-132
    • /
    • 2017
  • The performance of electrolytic processes using copper and catalyzed electrodes for enhanced nutrient removal with various catalyzers and combinations of electrodes was evaluated. The catalyzed electrodes removed more ammonia nitrogen than the copper electrode, but higher ammonia removal was achieved using a Pt/Ti anode. On the other hand, electrolysis using the Pt/Cu anode consumed less energy and cost less. During electroreduction, nitrate was better removed by a pair of copper electrodes than by the catalyzed electrodes. During electrolysis of synthetic wastewater, ammonia removal not only increased owing to direct oxidation at the anode, but was also influenced by indirect oxidation at the cathode. Platinum-coated copper and titanium cathodes actively produced oxidizers and thus removed more ammonia than a pure metal cathode. Although phosphorus was removable irrespective of the type of catalyzer, electrocoagulation using the copper electrode achieved complete removal of phosphorus in a period of less than 10 min.