Removal of Lead from Sea Water using Electrolysis and Coprecipitation Method

전기분해와 공침법을 이용한 해수중의 납 제거

  • Jin, Hong-Sung (Department of Applied Mathematics, Chonnam National University) ;
  • Lee, Jae-Ho (Department of Materials Science and Engineering, Hongik University)
  • Received : 2009.02.12
  • Accepted : 2010.01.15
  • Published : 2010.02.28

Abstract

The feasibility of lead removal by electrolytic coprecipitation was investigated. Electrolysis bath was divided into anode and cathode chamber with anion exchange resin filled membrane. Sea water was electrolyzed and pH of the electrolyte in cathode chamber was increased. Consequently it induced the formation of $Mg(OH)_2$ and $CaCO_3$. The colloidal type precipitates, hich have high surface area, adsorbed lead ions in sea water and coprecipitated. Sea water electrolyses were conducted at different current density. Concentrations of Mg, Ca and Pb in the solution were measured with titration and ASV method. Morphology and crystallography were analyzed with SEM, EDS and XRD. As pH and current density increased, most of lead ions in the sea water were successfully removed.

전기분해와 공침법을 이용한 해수 중의 납 제거 가능성에 대하여 실험하였다. 전기분해조는 음이온교환수지를 채운 격막으로 분리되었다. 전기분해가 진행됨에 따라 음극식의 pH는 상승하여 콜로이드 형태의 $Mg(OH)_2$$CaCO_3$이 생성되었다. 넓은 표면적을 가지는 콜로이드 입자는 납 이온을 흡착하여 침천되었다. 전류밀도를 변화시키면서 바닷물의 전기분해하였으며 바닷물에 남아있는 Mg, Ca, Pb의 양을 적정법과 ASV 방법을 이용하여 측정하였다. 전류밀도와 pH가 증가함에 따라 바닷물 중의 납은 대부분 효과적으로 제거되었다.

Keywords

References

  1. Yu, J., Welford, R. and Hills, P., "Industry respnses to EU WEEE and ROHS directives: perspectives from China,"Corp. Soc. Respnsib. Environ. Mgmt, 13, 286-299(2006). https://doi.org/10.1002/csr.131
  2. Muse, J. O., Carducci, C. N., Stripeikis, J. D., Tudino, M. B. and Fernandez, F. M., "A link between lead and cadmium kinetic sepciation in seawater and accumulation by the green alga Ulva lactuca,"Environ. Pollut., 141, 126-130(2006). https://doi.org/10.1016/j.envpol.2005.08.021
  3. Agusa, T., Kunito, T, Sudaryanto, A., Monirith, I., Kan- Atireklap, S., Iwata. H., Ismail, A., Sanguansin, J., Muchtar, M., Tana, T. and Tanabe, S., "Exposure assessment for trace elements from consumption of marine fish in Southeast Asia," Environ. Pollut., 145, 766-777(2007). https://doi.org/10.1016/j.envpol.2006.04.034
  4. Nunez-Lopez, R., Meas, Y., Gama, S., Borges, R. and Olguin, E., "Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation,"J. Hazard. Mater., 154, 62-632(2008).
  5. Pletcher, D. and Walsh, F., Industrial Electrochemistry, 2nd ed., Blackie academic & professional, London, pp. 256-269(1990).
  6. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solution, Pergamon press, pp. 139-154(1966).
  7. Dean, J., Lange s Handbook of Chemistry 13th ed., McGraw Hill, 5-8 (1985).
  8. Jiang, J. Q., Graham, N., Andre, C., Kelsall, G. H., and Brandon, N., "Laboratory study of electro-coagulation-flotation for water treatment,"Water Res., 36, 4064-4078(2002). https://doi.org/10.1016/S0043-1354(02)00118-5
  9. Mollah, M., Morkovsky, P., Gomes, J., Kesmez, M., Parga, J. and Cocke, D., "Fundamentals, present and future perspectives of electrocoagulation,"J. Hazard. Mater., B114, 199-210 (2004).
  10. ASTM D1141-90, Annual book of ASTM Standards, 11. 02, ASTM(1993).
  11. Winefordner, J. D., Modern Techniques in Electroanalysis, John Wiley & Sons, 153-158(1996).
  12. Fischer, E. and van den Berg, C.," Anodic stripping voltammetry of lead and cadmium using a mercury film electrode and thiocyanate,"Anal. Chim. Acta, 385, 273-280(1999). https://doi.org/10.1016/S0003-2670(98)00582-0
  13. Nascimento, P., Bohere, D., Carbalho, L., Caon, C., Pilau, E., Vendrame, Z. and Stefanello, R., "Determination of cadmium, lead and thallium in highly saline hemodialysis solutions by potentiometric stripping analysis(PSA),"Talanta, 65, 954-959 (2005). https://doi.org/10.1016/j.talanta.2004.08.026