• Title/Summary/Keyword: Co-contraction index

Search Result 11, Processing Time 0.031 seconds

The Effects of Augmented Somatosensory Feedback on Postural Sway and Muscle Co-contraction in Different Sensory Conditions

  • Kim, Seo-hyun;Lee, Kyung-eun;Lim, One-bin;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.126-132
    • /
    • 2020
  • Background: Augmented somatosensory feedback stimulates the mechanoreceptor to deliver information on bodily position, improving the postural control. The various types of such feedback include ankle-foot orthoses (AFOs) and vibration. The optimal feedback to mitigate postural sway remains unclear, as does the effect of augmented somatosensory feedback on muscle co-contraction. Objects: We compared postural sway and ankle muscle co-contraction without feedback (control) and with either of two forms of somatosensory feedback (AFOs and vibration). Methods: We recruited 15 healthy subjects and tested them under three feedback conditions (control, AFOs, vibration) with two sensory conditions (eyes open, or eyes closed and the head tilted back), in random order. Postural sway was measured using a force platform; the mean sway area of the 95% confidence ellipse (AREA) and the mean velocity of the center-of-pressure displacement (VEL) were assessed. Co-contraction of the tibialis anterior and gastrocnemius muscles was measured using electromyography and converted into a co-contraction index (CI). Results: We found significant main effects of the three feedback states on postural sway (AREA, VEL) and the CI. The two sensory conditions exerted significant main effects on postural sway (AREA and VEL). AFOs reduced postural sway to a level significantly lower than that of the control (p = 0.014, p < 0.001) or that afforded by vibration (p = 0.024, p < 0.001). In terms of CI amelioration, the AFOs condition was significantly better than the control (p = 0.004). Vibration did not significantly improve either postural sway or the CI compared to the control condition. There was no significant interaction effect between the three feedback conditions and the two sensory conditions. Conclusion: Lower-extremity devices such as AFOs enhance somatosensory perception, improving postural control and decreasing the CI during static standing.

Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Half a Year Prospective Study- (노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -전향적 연구(Prospective Study)-)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • Objective: The aim of this study was to determine the peak torques of the knee and ankle joint and local stability of the lower extremity's joints, and muscle activation patterns of the lower extremity's muscles between fallers and non-fallers in the elderly women during walking. Method: Four elderly women (age: $74.5{\pm}5.2yrs.$; height: $152.1{\pm}5.6cm$; mass: $55.3{\pm}5.4kg$; preference walking speed: $1.19{\pm}0.06m/s$) who experienced falls within six months since experiment had been conducted (falls group) and thirty-six subjects ($74.2{\pm}3.09yrs.$; height: $153.6{\pm}4.9cm$; mass: $56.7{\pm}6.4kg$; preference walking speed: $1.24{\pm}0.10m/s$) who had no experience in falls (non-falls group) within this periods participated in this study. They were measured torque peaks of the knee and ankle joint using a Human Norm and while they were walking on a treadmill at their natural pace, kinematic variables and EMG signals were collected with using a 3-D motion capture system and a wireless EMG system, respectively. Lyapunov Exponent (LyE) was determined to observe the dynamic local stability of the lower extremity's joints, and muscles activation and their co-contraction index were also analysed from EMG signals. Hypotheses between falls and non-falls group were tested using paired t-test and Mann-Whitey. Level of significance was set at p<.05. Results: Local dynamic stability in the adduction-abduction movement of the knee joint was significantly lower in falling group than non-falling group (p<.05). Conclusion: In conclusion, muscles which act on the abduction-adduction movement of the knee joint need to be strengthened to prevent from potential falls during walking. However, a small number of samples for fallers make it difficult to generalize the results of this study.

The Effects of Intentional Abdominal Muscle Contraction Through Real-Time Feedback on Sensed Changes in Waist Circumference on Pain, Functional Capacity and Neuromuscular Control in Adults With Lumbar Spinal Stenosis (허리둘레변화 감지의 실시간 되먹임을 통한 의도적인 복근수축이 요추관 협착증 환자의 골반경사와 기능적 능력 그리고 신경근 조절에 미치는 영향)

  • Seong, Jae-hyeon;Kim, Chang-beom;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Background: The continuous co-contraction of the trunk muscles through trunk stabilization exercises is important to patients with lumbar spinal stenosis (LSS). However, intentional abdominal muscle contraction (IAMC) for trunk stabilization has been used only for specific training in the treatment room. Objects: The purpose of this study was to provide feedback to adults with LSS to enable IAMC during activities of daily living (ADLs). Methods: The participants with spinal stenosis were divided into an experimental group of 15 adults and a control group of 16 adults. Electromyographic signals were measured while the subjects kept their both hands held up at $90^{\circ}$. The measured muscles were the rectus abdominis (RA), external oblique (EO), internal oblique (IO), and erector spinae (ES). Pelvic tilt was measured using a digital pelvic inclinometer. The degree of pain was measured using the visual analogue scale (VAS) and functional capacity was measured using the Korean version of the Oswestry disability index (KODI). Results: While the experimental group showed statistically significantly higher activities in the RA, EO, and IO after the intervention compared with the control group. Pelvic tilt was significantly decreased only in the experimental group. Both the experimental and control groups exhibited statistically significant declines in the VAS and KODI (p<.01). In terms of the levels of changes, the experimental group exhibited a statistically significant larger decline only in the VAS and the pelvic tilt when compared with the control group (p<.05). Conclusions: The subjects could stabilize their trunks, and relieve their pain and dysfunctions and reduce pelvic tilt by learning abdominal muscle contraction during ADLs. The combination of therapeutic exercises and IAMC may have greater effects on patients with LSS.

Effect of Muscle Pre-activation Properties on the Magnitude of Joint Torque during Voluntary Isometric Knee Extension (등척성 무릎 토크 발생 시 사전활성화 유형의 차이가 최대 자발적 토크 생성에 미치는 영향)

  • Kim, Jong-Ah;Shin, Narae;Lee, Sungjune;Xu, Dayuan;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.140-147
    • /
    • 2021
  • Objective: The purpose of this study is to identify the mechanism of changes in maximum voluntary torque with the magnitude and duration of pre-activation torque during voluntary isometric knee extension. Method: 11 male subjects (age: 25.91±2.43 yrs., height: 173.12±3.51 cm, weight: 76.45±7.74 kg) participated in this study. The subjects were required to produce maximal voluntary isometric torque with a particular pre-activation torque condition. The properties of pre-activation torque consisted of the combinations of 1) three levels of magnitude, e.g., 32 Nm, 64 Nm, 96 Nm, and 2) two levels of duration, e.g., 1 sec, and 3 sec; thus, a total of six conditions were given to the subjects. The force and EMG data were measured using the force transducers and wireless EMG sensor, respectively. Results: The results showed that the maximum voluntary torque increased the most with relatively large and fast (96 Nm, 1 sec) pre-activation condition. Similarly, with relatively large and fast (96 Nm, 1 sec) preactivation, it was found that the integrated EMG (iEMG) of the agonist muscles increased, while no significant changes in the co-contraction of the antagonist muscles for the knee extension. Also, the effect of pre-activation conditions on the rate of torque development was not statistically significant. Conclusion: The current findings suggest that relatively larger in magnitude and shorter in duration as the properties of pre-activation lead to a larger magnitude of maximal voluntary torque, possibly due to the increased activity of the agonist muscles during knee extension.

Analysis on the Changes in Muscle Function of the Leg Joint in Athletics Athletes Through by Whole Body Vibration Exercise Training (전신진동(Whole body vibration)운동훈련을 통한 육상 투척선수의 하지관절 근육 기능변화에 관한 분석)

  • Lee, Youngsun;Yoon, Changsun;Han, KiHoon;Kim, Jinhyun;Hah, Chongku;Park, Joonsung;Kim, Jongbin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.250-260
    • /
    • 2021
  • The purpose of this study is to investigate muscle function and symmetry index during whole body vibration exercise using lower extremity training posture for throwing athletes. For throwing athletes in their 20s(6 males, 4 females, age: 24.60±0.92years, height: 177.90±7.40cm, weight: 92.90±22.97kg), lower extremity training postures with squat, carphrase, and lunge movements. Whole body vibration exercise training was performed using. Tensiomyography(TMG) variables Time Delay(Td), Time Contraction(Tc), Time Sustain(Ts) Time Relaxation(Tr), and Displacement Maximumal(Dm) in the lower extremity joint muscles(biceps femoris(BF), gastrocnemius lateral(GL), gastrocnemius medial(GM), rectus femoris(RF), tibialis anterior(TA), lateral vastus(LV), medial latissimus(ML)), were measured to compare and analyze muscle activity, muscle fatigue, and left-right symmetry. The results of the study are left RF, VL, right VM (p<.05) in Td, VM (p<.05) in Tc, GM in Ts (p<.05), left RF in Tr, and right TA (p<. 05) showed a change. Therefore, it has been proven that various whole-body vibration training is an effective exercise with changes in muscle contraction, and stability of the core is secured by symmetry of the left and right muscles. For this reason, the whole body vibration exercise will have a positive effect on rehabilitation training, and it is believed that it will be able to improve performance.

Effect of a modified maneuver for quadriceps muscle setting with co-contraction of the hamstrings on patients with knee joint osteoarthritis (퇴행성 슬관절염 환자에 대한 수정된 대퇴사두근과 슬괵근 운동의 동시수축 효과)

  • Kang, Jung-Sun;Lee, Wan-Hee;Lee, Dong-Jin;Hwang, Don-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.375-383
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate a modified maneuver for quadriceps setting exercise for patients with knee osteoarthritis. Methods : The patients were randomly divided into a modified maneuver for quadriceps setting exercise group(MQG) and conventional quadriceps setting exercise group(CQG). Total of 28 patients received a modality with training for 1 hour, three times a week for 12 weeks. Results : Each group showed significant reductions in the WOMAC(Western Ontario McMaster Universities Osteoarthritis) Index, mobility, and muscle strength after 12 weeks. In pain, physical function, and hamstring muscle strength, there was a statistically significant difference between groups. Conclusion : According to the results, MQG experienced less pain, physical function, and increased more hamstring muscle strength than NQG.

The Study of a Diagnostic Algorithm for the Quantitative Evaluation of Stress Urinary Incontinence (복압성 요실금의 정량적 평가를 위한 진단 알고리즘에 관한 연구)

  • Min, Hae Ki;Kim, Ju Young;Noh, Si Cheol;Choi, Heung Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.277-287
    • /
    • 2018
  • Pelvic floor muscle is the main sub-system that maintains urinary continence. The weakness of pelvic floor muscles causes the stress urinary incontinence, and therefore the degree of functioning of pelvic floor muscles could be used as an index to assess the degree of stress urinary incontinence. In this study, the quantitative diagnosis algorithm was proposed to estimate the degree of stress urinary incontinence (SUI) by measuring the contraction pressure of pelvic floor muscle. For these reason, the contraction pressure measurement system from pelvic floor muscle was developed, and the measuring protocol was suggested to analysis the obtained data. As the results of clinical test, the proposed diagnosis algorithm shows the 80% of accuracy, and 20% of false positive diagnosis. On the other hand, false negative results were not confirmed. Consequentially, we thought that the proposed urinary incontinence diagnosis algorithm can quantitatively diagnose the progression of the stress urinary incontinence and it can be used for the development of the incontinence diagnosis system.

Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Retrospective Approach- (노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -후향성 연구-)

  • Ryu, Jiseon
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.3
    • /
    • pp.345-356
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the local stability of the lower extremity joints and muscle activation patterns of the lower extremity during walking between falling and non-falling group in the elderly women. Method: Forty women, heel strikers, were recruited for this study. Twenty subjects (age:72.55±5.42yrs; height:154.40±4.26cm; mass:57.40±6.21kg; preference walking speed:0.52±0.17m/s; fall frequency=1.70±1.26 times) had a history falls(fall group) within two years and Twenty subjects (71.90±2..90yrs; height:155.28±4.73cm; mass:56.70±5.241kg; preference walking speed: 0.56±0.13m/s) had no history falls(non-fall group). While they were walking on a instrumented treadmill at their preference speed for a long while, kinematic and EMG signals were obtained using 3-D motion capture and wireless EMG electrodes, respectively. Local stability of the ankle and knee joint were calculated using Lyapunov Exponent (LyE) and muscles activation and their co-contraction index were also quantified. Hypotheses were tested using one-way ANOVA and Mann-Whitey. Spearman rank was also used to determine the correlation coefficients between variables. Level of significance was set at p<.05. Results: Local stability in the knee joint adduction-abduction was significantly greater in fall group than non-fall group(p<.05). Activation of anterior tibials that acts on the foot segment dorsal flexion was greater in non-fall group than fall group(p<.05). CI between gastrocnemius and anterior tibials was found to be significantly different between two groups(p<.05). In addition, there was significant correlation between CI of the leg and LyE of the ankle joint flexion-extention in the fall group(p<.05). Conclusion: In conclusion, muscles that act on the knee joint abduction-adduction as well as gastrocnemius and anterior tibials that act on the ankle joint flexion-extention need to be strengthened to prevent from potential fall during walking.

Effects of Loading on Biomechanical Analysis of Lower Extremity Muscle and Approximate Entropy during Continuous Stair Walking (지속적인 계단 보행에서 부하가 하지 근육의 생체역학적 변인과 근사 엔트로피에 미치는 영향)

  • Kim, Sung-Min;Kim, Hye-Ree;Ozkaya, Gizem;Shin, Sung-Hoon;Kong, Se-Jin;Kim, Eon-Ho;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the changes of gait patterns and muscle activations with increased loads during stair walking. Also, it can be used as descriptive data about continuous stair walking in a real life setting. Method : Twelve sedentary young male adults(Age: $27.0{\pm}1.8yrs$, Weight: $65.8{\pm}9.9kg$) without any lower extremity injuries participated in this study. Participants performed stair walking up 7 floors and their ascending and descending motion on each floor was analyzed. A wireless electromyography(EMG) were attached on the Rectus Femoris(RF), Biceps Femoris(BF), Gastrocnemius(GN), Tibialis Anterior(TA) muscle to calculate integrated EMG(iEMG), median frequency(MDF) and co-contraction index(CI). Chest and left heel accelerometer signal were recorded by wireless accelerometer and those were used to calculate approximate entropy(ApEn) for analyzing gait pattern. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was LSD. Results : During ascending stairs, there were a statistically significant difference in Walking time between 1-2nd and other floors(p=.000), GN iEMG between 2-3th and 6-7th(p=.043) floor, TA MDF between 1-2nd and 5-6th(p=.030), 6-7th(p=.015) floor and TA/GN CI between 2-3th and 6-7th(p=.038) floor and ApEn between 1-2nd and 6-7th(x: p=.003, y: p=.005, z: p=.006) floor. During descending stairs, there were a statistically significant difference in TA iEMG between the 6-5th and 3-2nd(p=.026) floor, and for the ApEn between the 1-2nd and 6-7th(x: p=.037, y: p=.000, z: p=.000) floor. Conclusion : Subjects showed more regular pattern and muscle activation response caused by regularity during ascending stairs. Regularity during the first part of stair-descending could be a sign of adaptation; however, complexity during the second part could be a strategy to decrease the impact.