• Title/Summary/Keyword: Co-catalytic activity

Search Result 407, Processing Time 0.028 seconds

Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane (저농도 메탄 연소에서 상용 금속촉매의 활성)

  • Lee Kyong-Hwan;Park Jae-Hyun;Song Kwang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

Catalytic Oxidation of Trichloroethylene over Pd-Loaded Sulfated Zirconia

  • Park, Jung-Nam;Lee, Chul-Wee;Chang, Jong-San;Park, Sang-Eon;Shin, Chae-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1355-1360
    • /
    • 2004
  • The oxidative decomposition of trichloroethylene (TCE) was investigated using palladium catalysts supported on pure and sulfated zirconia. The reactions were performed under dry and wet conditions in the temperature between 200 and $550^{\circ}C$ keeping GHSV of 14,000 $h^{-1}.$ The products such as $C_2Cl_4,\;C_2HCl_5,\;CO\;and\;CO_2$ were observed in the reaction. The addition of water in the feed affected the distribution of reaction product with dramatically improved catalytic activity. The spectroscopic investigations gave an evidence that the strong acid sites play an important role on controlling the catalytic activity. Among the catalysts investigated, the Pd-loaded sulfated zirconia catalyst with 1 wt% Pd was found to exhibit the highest catalytic activity in the presence of water vapor having the stability for 30 h of the reaction at $500^{\circ}C$. The successful performance of the catalyst might be attributed to promotional effect of Pd active sites and strong acid sites induced from surface sulfate species on zirconia.

The Effect of $MnO_2$ Addition on the $V_2O_5/TiO_2$ Catalytic Filters for NO Reduction (NO 환원반응을 위한 $V_2O_5/TiO_2$계 촉매필터의 $MnO_2$ 조촉매 효과)

  • Shin, Hae-Joong;Choi, Jae-Ho;Song, Young-Hwan;Lee, Ju-Young;Jang, Sung-Cheol;Choi, Joo-Hong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.363-368
    • /
    • 2008
  • Nitrogen oxides (NO, $NO_2$ and $N_2O$) have been controlled effectively by the SCR catalysts coated on monolith or honeycomb in commercial sites with ammonia as reductant at high temperature range $300{\sim}400^{\circ}C$. However, the catalytic filter has much merit on the point of controlling the particles and nitrogen oxides simultaneously. It will be more advanced-system if the catalytic working temperature is reduced to the normal filtration temperature of under $200^{\circ}C$. This study has focus on the development of the catalytic filter working at the low temperature. So the additive effect of the components such as Pt and Mn (which are known the catalytic component of $V_2O_5/TiO_2$ was investigated. The $V_2O_5-WO_3$ catalytic filter exhibited high activity and selectivity at $250{\sim}320^{\circ}C$ showing more than 95% NO conversion for the treatment of 600 ppm NO at face velocity 2 cm/s. The Pt-$V_2O_5-WO_3$ catalytic filter shifted the optimum working temperature towards the lower temperature ($170{\sim}200^{\circ}C$). And NO conversion was 100% and higher than that of $V_2O_5-WO_3$ catalyst at $250{\sim}320^{\circ}C$. The $MnO_X-V_2O_5-WO_3$ catalytic filter showed the wide temperature range of $220{\sim}330^{\circ}C$ for more than 95% NO conversion. This is a remarkable advantage when considered the $MnO_X$ catalytic filter presents the maximum activity at $150{\sim}250^{\circ}C$ and $V_2O_5-WO_3$ catalytic filter shows the maximum activity at $250{\sim}320^{\circ}C$.

  • PDF

Synthesis, Characterization and Catalytic Activity of Ce1MgxZr1-xO2 (CMZO) Solid Heterogeneous Catalyst for the Synthesis of 5-Arylidine Barbituric acid Derivatives

  • Rathod, Sandip B.;Gambhire, Anil B.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.339-343
    • /
    • 2010
  • A series of $Ce_1Mg_xZr_{1-x}O_2$ (CMZO) mixed metal oxide with different molar ratio were prepared by simple co-precipitation method. The prepared materials were tested for their catalytic activity performance using Knoevenagel condensation of various aromatic aldehydes with barbituric acid under solvent-free condition in microwave. The best catalytic activity was obtained with CMZO (1:0.6:0.4). The synthesized materials were characterized by using XRD, FT-IR, SEM-EDS techniques.

$CO_2$ reforming using $TiO_2$/Ni catalysts prepared by atomic layer deposition

  • Kim, Dong-Wun;Kim, Kwang-Dae;Seo, Hyun-Ook;Dey, Nilay Kumar;Kim, Myoung-Joo;Kim, Young-Dok;Lim, Dong-Chan;Lee, Kyu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.443-443
    • /
    • 2011
  • Atomic layer deposition (ALD) was used to deposit $TiO_2$ on Ni particles, and changes in the catalytic activity of Ni for $CO_2$ reforming of methane (CRM) were studied. In the presence of $TiO_2$ islands on Ni surfaces, the onset temperature of the CRM reaction was lower than that of bare Ni. During the CRM reaction, carbon was deposited on the surface, reducing the catalytic activity of the surface, but $TiO_2$ was able to remove the carbon deposits from the surface. When the Ni surface was completely covered with $TiO_2$, catalytic activity disappeared, indicating that tuning of $TiO_2$ coverage on Ni is important for maximizing the activity of the CRM reaction.

  • PDF

A Study on the Coordination Polymerization Using C2-Symmetric Dichloro[rac-ethylenebisindenyl] zirconium(IV)/Methylaluminoxane System (C2-Symmetric Dichloro[rac-ethylenebisindenyl] zirconium(IV)/Methylaluminoxane 시스템을 이용한 배위 중합에 관한 연구)

  • Yang, Dong Jin;Kim, Hyun Ki;Park, No-Hyung;Lee, Jun Chul;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.2-9
    • /
    • 2013
  • We synthesized polyethylene, poly(ethylene-co-1-decene), poly(ethylene-co-p-methylstyrene), and poly(ethylene-ter-1-decene-ter-p-methystyrene) using a rac-$Et(Ind)_2ZrCl_2$ metallocene catalyst and a methylaluminoxane cocatalyst system. The materials were characterized using nuclear magnetic spectroscopy and fourier transform infrared spectroscopy. To identify suitable reaction conditions for terpolymerization, we studied the effects of catalyst content, cocatalyst/catalyst molar ratio, polymerization time, and polymerization temperature. As the catalyst content increased, the catalytic activity and the molecular weight of the terpolymers increased. The catalytic activity sharply increased but little change was observed after a polymerization time of 30 min. The increase in the cocatalyst/catalyst molar ratio resulted in a decrease in the molecular weight of the terpolymers and an increase in the catalytic activity to some degree. The catalytic activity increased with increasing polymerization temperature, while the molecular weight of the terpolymers decreased.

Enhancement of Catalytic Activity of Pt/Alumina by a Novel Pretreatment Method for the CO Oxidation for Fuel Cell Applications (연료전지용 CO의 산화를 위한 백금/알루미나 촉매의 성능향상에 관한 연구)

  • Jo, Myung-Chan
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1307-1314
    • /
    • 2008
  • Hydrogen gas is used as a fuel for the proton exchange membrane fuel cell (PEMFC). Trace amount of carbon monoxide present in the reformate $H_2$ gas can poison the anode of the PEMFC. Therefore, preferential oxidation (PROX) of CO is essential for reducing the concentration of CO from a hydrogen-rich reformate gas. In this study, conventional Pt/$Al_2O_3$ catalyst was prepared for the preferential oxidation of CO. The effects of catalyst preparation method, additive, and hydrogen on the performances of PROX reaction of CO were investigated. Water treatment and addition of Ce enhanced catalytic activity of the Pt/$Al_2O_3$ catalyst at low temperature below $100^{\circ}C$.

Synthesis and Catalytic Applications of Ruthenium(0) Nanoparticles in Click Chemistry

  • Kumar, Avvaru Praveen;Baek, Min-Wook;Sridhar, Chirumarry;Kumar, Begari Prem;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1144-1148
    • /
    • 2014
  • Here we report a facile synthesis of ruthenium (Ru) Nanoparticles (NPs) by chemical co-precipitation method. The calcination of ruthenium hydroxide samples at $500^{\circ}C$ under hydrogen atmosphere lead to the formation of $Ru^0$ NPs. The size and aggregation of Ru NPs depends on the pH of the medium, and type of surfactant and its concentration. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope image (TEM) analyses of particles indicated the formation of $Ru^0$ NPs, and have 10 to 20 nm sizes. As-synthesized $Ru^0$ NPs are characterized and investigated their catalytic ability in click chemistry (azidealkyne cycloaddition reactions), showing good results in terms of reactivity. Interestingly, small structural differences in triazines influence the catalytic activity of $Ru^0$ nanocatalysts. Click chemistry has recently emerged to become one of the most powerful tools in drug discovery, chemical biology, proteomics, medical sciences and nanotechnology/nanomedicine. In addition, preliminary tests of recycling showed good results with neither loss of activity or significant precipitation.

The Study on the Supported Oxide Catalysts for Reducing CO Gas in Automotive Exhaust Gas (자동차 배기가스 중의 CO 가스 제거를 위한 촉매장치의 개발에 관한 연구)

  • Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.4
    • /
    • pp.179-187
    • /
    • 1980
  • Perovskite-type oxide catalysts in the $\textrm{LaMnO}_3$ family were prepared by both freeze drying and precipitation technique, and their catalytic activities with respect to the oxidation of CO with $O_2$ were measured in the composite gases. Freeze drying is a new technique for the prevention of migration of the solutes during drying. Therefore, the corrugated cordierite monolith fabricated with the Ø 1mm stainless steel bar was directly impregnated with nitrate solutions containing the appropriate cations, freeze dried and calcined. Precipitation was done by using $\textrm{(NH_4)}_2\textrm{CO}_3$ but the precipitated catalysts gave lower catalytic than the freeze dried samples due to, in part, relatively high calcining temperature. In this study, freeze dried composition had high catalytic activity, and their apparent activation energy for oxidation of CO was calculated by the rate plots using the data where the percent conversion of CO was less than 20%.

  • PDF

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate (알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교)

  • Bungay, Vergel C.;Song, Byungho
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.