• Title/Summary/Keyword: Co-base alloy

Search Result 109, Processing Time 0.036 seconds

Nondestructive Evaluation for Thermally Degraded Co-base Superalloy by Scanning Acoustic Microscope (초음파현미경을 이용한 Co 기 초내열 합금 열화재의 비파괴평가)

  • Kim, Chung-Seok;Song, Jin-Hun;Kwon, Sook-In;Lim, Jea-Seang;Park, Ik-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.336-341
    • /
    • 2004
  • This research investigates the feasibility of ultrasonic microscope for nondestructive assessment of thermal degradation in artificially aged commercial Co-base superalloy, FSX414. This alloy has been used for high temperature structure applications such as stationary gas turbine blade and nozzle chamber in fossil plant. Microstructural change was found that the fine carbides became coarser and spheroidized in matrix as aging time increased. The leaky surface acoustic wave velocity gradually decreases by a maximum of 4.7% with increasing aging time up to 4,000hours. However, the longitudinal wave velocity has a little change. Also, it has a good correlation between leaky surface acoustic wave velocity and Vickers hardness. Consequently, LSAW can be used to examine the degree of degradation in thermally aged Co-base superalloy.

  • PDF

SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY (주조 형상기억 니켈-티타늄 합금의 초탄성)

  • Choi, Dong-Ik;Choie, Mok-Kyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.3 no.1
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

The Etched Surface of the Repeatedly Cast Dental Base Metal Alloy (반복 사용된 치과용 비귀금속에 의한 주조체의 식각표면에 대한 연구)

  • Lee, Sun-Hyung
    • The Journal of the Korean dental association
    • /
    • v.23 no.7 s.194
    • /
    • pp.577-583
    • /
    • 1985
  • The purpose of this investigation was to evaluate scanning electron micrographs of repeatedly cast base metal alloy. For this study two Ni-Cr-Be alloys were used; Rexillium III and Verabond. They were repeatedly cast without addition o new alloy melting with an electric resistant furnace (Castron 8, Yoshida dental equipment Mfg.Co.). They were etched with 10% H₂SO₄ Sol. at 300mA/㎠ for 3 minutes with the use of metal etching unit Oxyetch (OXY dental product Inc.), and ultrasonic cleaning in 18% HC1 Sol. was done. Etched surfaces were examined under a SEM at x 200 and x 750. The surfaces are shown in legends.

  • PDF

MACRO-SHEAR BOND STRENGTH AND MICRO-SHEAR BOND STRENGTH OF CEROMER BONDED TO METAL ALLOY AND FIBER REINFORCED COMPOSITE

  • Park Hyung-Yoon;Cho Lee-Ra;Cho Kyung-Mo;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.654-663
    • /
    • 2004
  • Statement of problem. According to the fracture pattern in several reports, fractures most frequently occur in the interface between the ceromer and the substructure. Purpose. The aim of this in vitro study was to compare the macro shear bond strength and microshear bond strength of a ceromer bonded to a fiber reinforced composite (FRC) as well as metal alloys. Material and methods. Ten of the following substructures, type II gold alloy, Co-Cr alloy, Ni-Cr alloy, and FRC (Vectris) substructures with a 12 mm in diameter, were imbedded in acrylic resin and ground with 400, and 1, 000-grit sandpaper. The metal primer and wetting agent were applied to the sandblasted bonding area of the metal specimens and the FRC specimens, respectively. The ceromer was placed onto a 6 mm diameter and 3 mm height mold in the macro-shear test and 1 mm diameter and 2 mm height mold in the micro-shear test, and then polymerized. The macro- and micro-shear bond strength were measured using a universal testing machine and a micro-shear tester, respectively. The macro- and micro-shear strength were analyzed with ANOVA and a post-hoc Scheffe adjustment ($\alpha$ = .05). The fracture surfaces of the crowns were then examined by scanning electron microscopy to determine the mode of failure. Chi-square test was used to identify the differences in the failure mode. Results. The macro-shear strength and the micro-shear strength differed significantly with the types of substructure (P<.001). Although the ceromer/FRC group showed the highest macroand micro-shear strength, the micro-shear strength was not significantly different from that of the base metal alloy groups. The base metal alloy substructure groups showed the lowest mean macro-shear strength. However, the gold alloy substructure group exhibited the least micro-shear strength. The micro-shear strength was higher than the macro-shear strength excluding the gold alloy substructure group. Adhesive failure was most frequent type of fracture in the ceromer specimens bonded to the gold alloys. Cohesive failure at the ceromer layer was more common in the base metals and FRC substructures. Conclusion. The Vectris substructure had higher shear strength than the other substructures. Although the shear strength of the ceromer bonded to the base metals was lower than that of the gold alloy, the micro-shear strength of the base metals were superior to that of the gold alloy.

The Effect of Heat Treatment on the Microstructural Evolution and Mechanical Properties of Co-base Materials (CO-기 합금의 열처리에 의한 미세조직 및 기계적 특성변화에 관한 연구)

  • Kim, Gi-Yeob;Jung, Byong-Ho;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • To obtain the optimal condition of heat treatment of wear-resistant alloy, hardness and Charpy V-notch test have been performed with Co-based Stellite No.4, No.6 and Tribaloy 800 alloys, following by heat treatment at the various conditions. Heat treatment at $1250^{\circ}C$ for 1 hours caused the as-casted Tribaloy 800 with FCC crystal structure to transform to HCP structure and lamellar eutectic structure was disappeared, which did not influence on the hardness. Aging at $800^{\circ}C$ for 20 hours, following by $1250^{\circ}C$ for 2 hours heat treatment has enhanced hardness significantly, which is due to the precipitation of large amounts of Laves-phase. The hardness of Stellite alloys was increased by the aging at $800^{\circ}C$ to 5 hours, and was nearly constant by the aging over 5 hours. The toughness of Stellite alloys was a few influenced by the aging treatment.

  • PDF

The Effect on the Strength According to Carbon Content of Kovar Steel (코바강의 탄소첨가량에 따른 강도에 미치는 영향)

  • Choi, Byung-Hui;Choi, Byung-Ky
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2010
  • Ni alloy steel is able to use during long time because of good acid and corrosion resistance. So, it's research has focused on developing the alternative alloy which is economically feasible. Recently, consumption of Kovar steel is gradually increased in field of the jet engine and the gas turbine because of its low thermal expansive characteristics. The specimens of Kovar steel(29%Ni-17%Co) contain 0.00%C, 0.03%C, 0.06%C, 0.10%C and 0.20%C, respectively. Ingots are manufactured by VIM(vacuum induction melting furnace) and then specimens are made by automatic hot rolling after heat treatment. Strength of Kovar steel according to carbon contents is estimated by hardness, tensile and impact test. Hardness of the 0.20%C specimen is more improved approximately 14.4% than one of base metal. Its strength increases 32.4% of a base metal, and its impact energy is also enhance 11.5%.

Microstructure analysis of pressure resistance seal welding joint of zirconium alloy tube-plug structure

  • Gang Feng;Jian Lin;Shuai Yang;Boxuan Zhang;Jiangang Wang;Jia Yang;Zhongfeng Xu;Yongping Lei
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4066-4076
    • /
    • 2023
  • Pressure resistance welding is usually used to seal the connection between the cladding tube and the end plug made of zirconium alloy. The seal welded joint has a direct effect on the service performance of the fuel rod cladding structure. In this paper, the pressure resistance welded joints of zirconium alloy tube-plug structure were obtained by thermal-mechanical simulation experiments. The microstructure and microhardness of the joints were both analyzed. The effect of processing parameters on the microstructure was studied in detail. The results showed that there was no β-Zr phase observed in the joint, and no obvious element segregation. There were different types of Widmanstätten structure in the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ) of the cladding tube and the end plug joint because of the low cooling rate. Some part of the grains in the joint grew up due to overheating. Its size was about 2.8 times that of the base metal grains. Due to the high dislocation density and texture evolution, the microhardnesses of TMAZ and HAZ were both significantly higher than that of the base metal, and the microhardness of the TMAZ was the highest. With the increasing of welding temperature, the proportion of recrystallization in TMAZ decreased, which was caused by the increasing of strain rate and dislocation annihilation.

A Study on Durability of Sprayed Coating Layer in the Molten Zn-0.2% Al Alloy Bath (아연-0.2%알루미늄합금 용융도금액 중에서 용사층의 내구성에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.512-519
    • /
    • 2001
  • Sink roll has been used in molten Zn-0.2%Al alloy bath of continuous galvanizing line in sinking and stabilizing process of the steel strip in molten metal bath. In this process, although the scraper scraps off the sink roll surface, the dross compounds is builded up on the sink roll surface and the life time of the sink roll is shorten by the dross compounds. The present study was investigated the application of the spray coating layer on sink roll body for improving durability In molten Zn-0.2%Al alloy. Through the durability tests in molten Zn-0.2%Al alloy with various ceramic and cermet coating layer, the optimum bond and top coating material was obtained. As the results, the system of STS430F base metal, WC-l7Co bond and $ZrO_2-SiO_2$ top coating was clarified to be the best quality of durability in molten Zn-0.2%Al alloy.

  • PDF

Fatigue crack growth behaviors of SA508 Gr.3 Cl.2 base and weld material in 290℃ water environment (SA508 Gr.3 Cl.2 저합금강과 용접부의 290℃ 수화학 환경에서 피로균열거동 분석)

  • Cho, Pyungyeon;Kim, Jeong Hyeon;Jang, Changheui;Cho, Hyunchul
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.120-128
    • /
    • 2012
  • The fatigue crack growth behaviors of SA508 Gr.3 Cl.2 low alloy steel in high temperature water environment were investigated. Overall, weld metal showed similar crack growth rate as that of base metal. At 0.01 Hz, fatigue crack growth rate (FCGR) was higher than that in air while the difference was smaller at 0.1 Hz. Also, FCGR showed ${\Delta}K$ dependency at 0.1 Hz only, indicating that the environmental effect was much greater at slower loading frequency of 0.01 Hz. FCGR of SA508 Gr.3 Cl.2 low alloy steel was compatible to or smaller than the ASME Sec. XI fatigue reference curves in high temperature water environment.

Effect of Zone Annealing Velocity on the directional Recrystallization in a Ni base Oxide Dispersion Strengthened Alloys (Ni계 산화물 분산 강화 합금의 방향성 재결정에 미치는 존 어닐링 속도의 영향)

  • Kim, Young-Kyun;Yoon, Seong-June;Park, Jong-Kwan;Kim, Hwi-Jun;Kong, Man-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.331-335
    • /
    • 2018
  • This study investigates the directional recrystallization behavior of Ni based oxide dispersion strengthened (ODS) alloy according to the zone annealing velocity. The zone annealing temperature is set as $1390^{\circ}C$, while the zone velocities are set as 2.5, 4, 6, and 10 cm/h, respectively. The initial microstructure observation of the as-extruded sample shows equiaxed grains of random orientation, with an average grain size of 530 nm. On the other hand, the zone annealed samples show a large deviation in grain size depending on the zone velocities. In particular, grains with a size of several millimeters are observed at 2.5-cm/h zone velocity. It is also found that the preferred orientation varies with the zone annealing velocity. On the basis of these results, this study discusses the role of zone velocities in the directional recrystallization of Ni base ODS alloy.