DOI QR코드

DOI QR Code

Effect of Zone Annealing Velocity on the directional Recrystallization in a Ni base Oxide Dispersion Strengthened Alloys

Ni계 산화물 분산 강화 합금의 방향성 재결정에 미치는 존 어닐링 속도의 영향

  • Kim, Young-Kyun (Department of Materials Science and Engineering, Inha University) ;
  • Yoon, Seong-June (Department of Materials Science and Engineering, Inha University) ;
  • Park, Jong-Kwan (R&D Center, Korea Sintered Metal Co., Ltd.) ;
  • Kim, Hwi-Jun (Korea Institute of Industrial Technology) ;
  • Kong, Man-Sik (Institute for Advanced Engineering) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • Received : 2018.08.13
  • Accepted : 2018.08.17
  • Published : 2018.08.28

Abstract

This study investigates the directional recrystallization behavior of Ni based oxide dispersion strengthened (ODS) alloy according to the zone annealing velocity. The zone annealing temperature is set as $1390^{\circ}C$, while the zone velocities are set as 2.5, 4, 6, and 10 cm/h, respectively. The initial microstructure observation of the as-extruded sample shows equiaxed grains of random orientation, with an average grain size of 530 nm. On the other hand, the zone annealed samples show a large deviation in grain size depending on the zone velocities. In particular, grains with a size of several millimeters are observed at 2.5-cm/h zone velocity. It is also found that the preferred orientation varies with the zone annealing velocity. On the basis of these results, this study discusses the role of zone velocities in the directional recrystallization of Ni base ODS alloy.

Keywords

References

  1. E.F. Bradley: Superalloys-A Technical Guide, ASM International (1988).
  2. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman and D.T. Hoelzer: J. Nucl. Mater., 341 (2005) 103. https://doi.org/10.1016/j.jnucmat.2005.01.017
  3. T.M. Pollock and S. Tin: J. Propul. Power, 22 (2006) 361. https://doi.org/10.2514/1.18239
  4. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  5. L. Ma, B.S.J. Kang, M.A. Alvin and C.C. Huang: KONA Powder Part. J. 31 (2014) 146. https://doi.org/10.14356/kona.2014004
  6. Z.W. Zhang, G.L. Chen and G. Chen: Mater. Sci. Eng. A, 435-436 (2006) 573. https://doi.org/10.1016/j.msea.2006.07.094
  7. A.Y. Badmos, H.J. Frost and I. Baker: Acta Mater., 50 (2002) 3347. https://doi.org/10.1016/S1359-6454(02)00138-6
  8. Z.W. Zhang, G.L. Chen and G. Chen: Mater. Sci. Eng. A, 434 (2006) 58. https://doi.org/10.1016/j.msea.2006.07.016
  9. M. Heilmaier and F.E.H. Muller: JOM, 51 (1999) 23.
  10. P. Podany, Z. Novy and J. Dlouhy: Mater. Technol., 50 (2016) 199.
  11. A.S. Taha and F.H. Hammad: Phys. Status Solidi A, 119 (1990) 455. https://doi.org/10.1002/pssa.2211190207
  12. S. Ukai, K. taya, K. Nakamura, M.S. Aghamiri, N. Oono, S. Hayashi and T. Okuda: J. Alloy. Compd., 744 (2018) 204. https://doi.org/10.1016/j.jallcom.2018.01.406
  13. J. Li and I. Baker: Mater. Sci. Eng. A, 392 (2005) 8. https://doi.org/10.1016/j.msea.2004.07.017