• Title/Summary/Keyword: Co-Fe-Al-O

Search Result 327, Processing Time 0.028 seconds

Formation of $FeAl_2O_4$ in $H_2-CO_2$ and its behavior in $CO_2$(I) ($H_2-CO_2$에서 $FeAl_2O_4$의 생성기구와 $CO_2$ 중에서의 거동(I))

  • 이홍림;강명구
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 1982
  • $FeAl_2O_4$ was formed from the starting material of $Fe_2O_3$ and $Al_2O_3$ by controlling the oxygen partial pressure using $H_2-CO_2$ gas mixture, over the temperature range of 800~120$0^{\circ}C$. The formation mechanism of $FeAl_2O_4$ was found to be a second order chemical reaction, and the activation energy of formation was observed as 39.97 kcal/mole. Vaporization behavior of $FeAl_2O_4$ under $CO_2$ atmosphere was observed over the temperature range of 800~120$0^{\circ}C$. $FeAl_2O_4$ was vaporized by a second order chemical reaction and the activation energy was found to be 21.8kcal/mole. Electrical conductivity of $FeAl_2O_4$ was also measured.

  • PDF

Magnetic Characteristics and Annealing Effects of $NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$Spin Tunneling Junctions ($NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$ 스핀 터널링 접합의 자기적 특성과 열처리 효과)

  • 최연봉;박승영;강재구;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.296-300
    • /
    • 1999
  • Cross-shape structures of spin tunneling junctions were fabricated using DC magnetron sputtering and metal masks. The film structures were $substrate/Ta/NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$ and $substrate/Ta/NiFe/CoFe/ Al_2O_3/CoFe/NiFe/FeMn/NiFe$. Fabrication conditions of insulating layer ($Al_2O_3$) and thickness and sputtering power of each film layer were varied, and maximum magnetoresistance ratio of 24.3 % was obtained. Magnetic characteristic variations in the above mentioned two structures and two types of substrates (Corning glass 7059 and Si(111)) were compared. Annealing of the junctions was performed to find out magnetic characteristic variations expected from the device fabrication. Magneoresistance Ratio were observed to maintain as-deposited value up to 150 $^{\circ}C$ annealing and then to drop rapidly after 180 $^{\circ}C$ annealing.

  • PDF

CoFe Layer Thickness and Plasma Oxidation Condition Dependence on Tunnel Magnetoresistance (CoFe의 삽입과 산화조건에 따른 자기 터널 접합의 자기저항특성에 관한 연구)

  • 이성래;박병준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.196-201
    • /
    • 2001
  • The dependence of CoFe interfacial layer thickness and plasma oxidation condition on tunneling magnetoresistance (TMR) in Ta/NiFe/FeMn/NiFe/Al$_2$O$_3$/NiFe/Ta tunnel junctions was investigated. As the CoFe layer thickness increases, TMR ratio rapidly increases to 13.7 % and decreases with further increase of the CoFe layer thickness. The increase of TMR with the CoFe thickness up to 25 was thought to be due mails to the high spin-polarization of CoFe. The maximum MR of 15.3% was obtained in the Si(100)/Ta(50 )/NiFe(60 )/FeMn(250 )/NiFe(70 )/Al$_2$O$_3$/NiFe(150 )/Ta(50 ) magnetic tunnel junction with a 16 Al oxidized for 40 sec using a Ar/O$_2$ (1:4) mixture gas.

  • PDF

Tunneling Magnetoresistive Properties of Reactively Sputtered $Fe/Al_2O_3/Co$ Trilayer Junctions ($Fe/Al_2O_3/Co$ 자기 터널링 접합 제작 및 자기수송현상에 관한 연구)

  • 최서윤;김효진;조영목;주웅길
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 1998
  • We have investigated tunneling magnetoresistance (TMR) properties of Fe/$Al_2O_3$/Co magnetic trilayer junctions sputtered on single-crystal Si (001) substrates. $Al_2O_3$ layers with thicknesses of 50~200 $\AA$ were deposited directly on the bottom ferromagnetic layer by a reactive rf sputtering. For comparsion, we prepared Pt/$Al_2O_3$/Pt tunnel junctions whose current-voltage (I-V) characteristics measured at 300 K indicated that reactively sputtered $Al_2O_3$ is a particularly good material for thin insulating barriers and allows us to form pinhole-free tunnel barriers. The magnetic tunnel junctions exhibit changes of tunnel resistance of about 0.1% at 300 K with an applied magnetic field and it was found that most junctions with Co as a top electrode have rather good I-V and TMR characteristics compared to those with Fe as a electrode. These results were discussed in relation to interfacial on the basis of those for Pt/$Al_2O_3$/Pt.

  • PDF

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

Microstructural and Magnetic Properties of CoFeB/MgO/CoFeB Based Magnetic Tunnel Junction Depending on Capping Layer Materials (Capping층 재료에 따른 CoFeB/MgO/CoFeB 자기터널접합의 미세구조와 자기저항 특성)

  • Chung, Ha-Chang;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.162-165
    • /
    • 2007
  • We investigated the effects of the capping layer materials on the crystallization of the amorphous top-CoFeB (t-CoFeB) electrode and the magnetoresistance properties of the magnetic tunnel junctions (MTJs). When the hcp(002)-textured Ru capping layer was used, the amorphous t-CoFeB was crystallized to bcc-CoFe(110). The CoFe(110)/Ru(002) texture relation can be minimized the lattice mismatch down to 5.6%. However, when the fine polycrystalline but almost amorphous TiAl or amorphous ZrAl were used, the amorphous t-CoFeB was crystallized to bcc-CoFe(002). When the amorphous capping materials were used, the evolution of the t-CoFeB texture was affected mainly by the MgO(001) texture. Consequently, the M ratios of the annealed MTJ capped with the ZrAl and TiAl (72.7 and 71.8%) are relatively higher than that of the MTJ with Ru capping layer (46.7%). In conclusions, the texture evolution of the amorphous t-CoFeB during the post deposition annealing could be controlled by the crystallinity of the adjacent capping layer and in turn, it affects the TMR ratio of MTJs.

Neutron Diffraction and Mössbauer Studies of Superexchange Interaction on Al Substituted Co-ferrite (Al이 치환된 Co 페라이트에 관한 뫼스바우어 분광법 및 중성자 회절 연구)

  • Kim, Sam-Jin;Myoung, Bo-Ra;Kim, Chul-Sung;Baek, Kyung-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.287-292
    • /
    • 2006
  • Al substituted $CoAl_{0.5}Fe_{1.5}O_{4}$ has been studied with x-ray and neutron diffraction, $M\"{o}ssbauer$ spectroscopy and magnetization measurements. $CoAl_{0.5}Fe_{1.5}O_{4}$ revealed a cubic spinel structure of ferrinmagnetic long range ordering at room temperature, with magnetic moments of $Fe^{3+}(A)(-2.29{\mu}_{B}),\;Fe^{3+}(B)(3.81\;{\mu}_{B}),\;Co^{2+}(B)(2.66{\mu}_{B})$, respectively. The temperature dependence of the magnetic hyperfine field in $^{57}Fe$ nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the $N\'{e}el$ theory of magnetism. In the sample of $CoAl_{0.5}Fe_{1.5}O_{4}$, the interaction A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B}=-19.3{\pm}0.2k_{B}\;and\;J_{A-A}=-21.6{\pm}0.2k_{B}$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B}=3.8{\pm}0.2k_{B}$.

Fabrication and Its Characteristics of YSZ Composite with Added Transition Metal Oxides (천이금속산화물이 첨가된 YSZ 복합체의 제조 및 그 특성)

  • 최성운;박재성
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.341-349
    • /
    • 2002
  • Electrical, mechanical and sinterability properties of yttria-stabilized zirconia doped with 5.35wt% $Y_2$O$_3$(Y$_2$O$_3$- containing stabilized zirconia : YSZ) were studied as a function of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ addition. The ratio of monoclinic phase to tetragonal phase was changed by the addition of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ to 8.00 wt% and sintered density decreased with increasing $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ addition. Fracture toughness increased with the increase of monoclinic to tetragonal phase ratio and was maximum at about 18%. When transition metals such as CoO, Fe$_2$O$_3$ or MnO$_2$ was added more than 1.5 wt%, the electrical conductivity of YSZ increased. But $Al_2$O$_3$ hardly affected the electrical conductivity of YSZ. The addition of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ into YSZ resulted in the more complex behavior of fracture toughness and hardness variation and the specimen with 1.5wt%-Fe$_2$O$_3$, 3.0wt%-Al$_2$O$_3$ and 1.5wt%-CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of 10.8 MPa.m$^{1}$2/ and Vickers hardness of 1201 kgf/mm$^2$.

Effect of Fe Addition on Hydrogen Rich NSR Kinetics over Pt/Co/Ba/Al2O3 Catalyst (Pt/Co/Ba/Al2O3에 Fe 첨가가 수소 풍부 NSR 반응성에 미치는 영향)

  • Kim, Jingul;Jeon, Jiyong;Kim, Seongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.581-587
    • /
    • 2012
  • Thermal aging effect on NSR kinetics was studied over Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. The amount of $NO_x$ uptake over Pt/Co/Fe/Ba/$Al_2O_3$ calcined at $400^{\circ}C$ increased with increasing NSR temperature from $200^{\circ}C$ to $400^{\circ}C$, where amount of $NO_x$ uptake is the highest at $400^{\circ}C$ with mol ratio of $NO_x$/Ba = 0.5. Thereafter, the amount of $NO_x$ uptake at $400^{\circ}C$ decreased with the higher calcination temperature, where Pt/Co/Fe/Ba/$Al_2O_3$ catalyst calcined at $700^{\circ}C$ showed an amount of $NO_x$ uptake with the mol ratio of $NO_x$/Ba=0.062. Result of XRD and NSR showed that Fe addition into Pt/Co/Fe/Ba/$Al_2O_3$ suppressed sintering of Pt crystallites and make $NO_x$ uptake larger, compared to no addition of Fe into Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. From BET result, it was found that the change of specific surface area was relatively small by the thermal aging process. Therefore, it was found that the sintering of Pt crystallites caused the decrease of $NO_x$ uptake during NSR reaction and Fe played a role to suppress the sintering process of Pt crystallites caused by thermal aging.

The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method

  • Choi, Seung Han
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.371-375
    • /
    • 2018
  • The manganese-, nickel-, and aluminum-doped cobalt ferrite powders, $Mn_{0.2}Co_{0.8}Fe_2O_4$, $Ni_{0.2}Co_{0.8}Fe_2O_4$, and $Al_{0.2}CoFe_{1.8}O_4$, are fabricated by the sol-gel method, and the crystallographic and magnetic properties of the powders are studied in comparison with those of $CoFe_2O_4$. All the ferrite powders are nano-sized and have a single spinel structure with the lattice constant increasing in $Mn_{0.2}Co_{0.8}Fe_2O_4$ but decreasing in $Ni_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$. All the $M{\ddot{o}}ssbauer$ spectra are fitted as a superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The values of the magnetic hyperfine fields of $Ni_{0.2}Co_{0.8}Fe_2O_4$ are somewhat increased in the A and B sites, while those of $Mn_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$ are decreased. The variation of $M{\ddot{o}}ssbauer$ parameters is explained using the cation distribution equation, superexchange interaction and particle size. The hysteresis curves of the ferrite powders reveal a typical soft ferrite pattern. The variation in the values of saturation magnetization and coercivity are explained in terms of the site distributions, particle sizes and the spin magnetic moments of the doped ions.