• Title/Summary/Keyword: Co-Expression

Search Result 2,378, Processing Time 0.032 seconds

Expression Analyses of MicroRNAs in Hamster Lung Tissues Infected by SARS-CoV-2

  • Kim, Woo Ryung;Park, Eun Gyung;Kang, Kyung-Won;Lee, Sang-Myeong;Kim, Bumseok;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.953-963
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5℃, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.

Effect of Glial-neuronal Cell Co-culture on GFAP Expression of Astrocytes (신경세포가 별아교세포의 아교섬유성 산단백질 표현에 미치는 영향)

  • Bae Hyung-Mi;Park Jung-Sun;Yeon Dong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.285-296
    • /
    • 1997
  • Injury to brain transforms resting astrocytes to their reactive form, the hallmark of which is an increase in glial fibrillary acidic protein (GFAP), the major intermediate filament protein of their cell type. The overall glial response after brain injury is referred to as reactive gliosis. Glial-neuronal interaction is important for neuronal migration, neurite outgrowth and axonal guidance during ontogenic development. Although much attention has been given to glial regulation of neuronal development and regeneration, evidences also suggest a neuronal influence on glial cell differentiation, maturation and function. The aim of the present study was to analyze the effects of glial-hippocampal neuronal co-culture on GFAP expression in the co-cultured astrocytes. The following antibodies were used for double immunostaining chemistry; mouse monoclonal antibodies for confirm neuronal cells, rabbit anti GFAP antibodies for confirm astrocytes. Primary cultured astrocytes showed the typical flat polygonal morphology in culture and expressed strong GFAP and vimentin. Co-cultured hippocampal neurons on astrocytes had phase bright cell body and well branched neurites. About half of co-cultured astrocytes expressed negative or weak GFAP and vimentin. After 2 hour glutamate (0.5 mM) exposure of glial-neuronal co-culture, neuronal cells lost their neurites and most of astrocytes expressed strong CFAE and vimentin. In Western blot analysis, total GFAP and vimentin contents in co-cultured astrocytes were lower than those of primary cultured astrocytes. After glutamate exposure of glial-neuronal co-culture, GFAP and vimentin contents in astrocytes were increased to the level of primary cultured astrocytes. These results suggest that neuronal cell decrease GFAP expression in co-cultured astrocytes and hippocampal neuronal-glial co-culture can be used as a reactive gliosis model in vitro for studying GFAP expression of astrocytes.

  • PDF

Increased Expression of Epithelial Cell Adhesion Molecule (EpCAM) in Rat Hepatic Tumors Induced by Diethylnitrosamine

  • Kang, Jin Seok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3627-3630
    • /
    • 2012
  • The epithelial cell adhesion molecule (EpCAM) is a pan-epithelial differentiation antigen that is expressed on almost all carcinomas. However, a role in rat liver carcinogenesis has never been reported previously. Thus, its expression was investigated herein in rat liver tumors induced by diethylnitrosamine (DEN). Twenty male 5-week-old F344 rats were used in this experiment. Mini-osmotic pumps containing doses of 47.5 mg of DEN were inserted into the abdominal cavity of each animal to initiate liver carcinogenesis. All animals were sacrificed at 26 weeks after DEN treatment. At necropsy, hepatic masses were processed for histopathological examination, which revealed forty-four hepatocellular adenomas (HCAs) and twenty hepatocellular carcinomas (HCC). Tumors were immunohistochemically analyzed for EpCAM, proliferating cell nuclear antigen (PCNA) and co-localization of the two. EpCAM expression was mainly detected in hepatic tumor cells, showing a cytoplasmic staining pattern. However, expression was also slightly observed in normally-appearing surrounding hepatic cells. PCNA expression was highly detected in tumor cells, showing nuclear staining. Double staining of EpCAM and PCNA in tumors showed many cells with co-localization. Taken together, EpCAM and PCNA expression were increased in DEN-induced tumors and many tumor cells showed co-expression. It is suggested that EpCAM may increase during DEN-induced tumors, possibly associated with cell proliferation.

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

Effect of Gene Amplifications in Porphyrin Pathway on Heme Biosynthesis in a Recombinant Escherichia coli

  • Lee, Min Ju;Kim, Hye-Jung;Lee, Joo-Young;Kwon, An Sung;Jun, Soo Youn;Kang, Sang Hyeon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.668-673
    • /
    • 2013
  • A recombinant E. coli co-expressing ALA synthase (hemA), NADP-dependent malic enzyme (maeB), and dicarboxylic acid transporter (dctA) was reported to synthesize porphyrin derivatives including iron-containing heme. To enhance the synthesis of bacterial heme, five genes of the porphyrin biosynthetic pathway [pantothenate kinase (coaA), ALA dehydratase (hemB), 1-hydroxymethylbilane synthase (hemC), uroporphyrinogen III synthase (hemD), and uroporphyrinogen III decarboxylase (hemE)] were amplified in the recombinant E. coli co-expressing hemA-maeB-dctA. Pantothenate kinase expression enabled the recombinant E. coli to accumulate intracellular CoA. Intracellular ALA was the most enhanced by uroporphyrinogen III synthase expression, porphobilinogen was the most enhanced by ALA dehydratase expression, uroporphyrin and coproporphyrin were the most enhanced by 1-hydroxymethylbilane synthase expression. The strain co-expressing coaA, hemA, maeB, and dctA produced heme of $0.49{\mu}mol/g$-DCW, which was twice as much from the strain without coaA expression. Further pathway gene amplifications for the porphyrin derivatives are discussed based on the results.

Oral Administration of Lactobacillus plantarum HY7714 Protects Hairless Mouse Against Ultraviolet B-Induced Photoaging

  • Kim, Hyun Mee;Lee, Dong Eun;Park, Soo Dong;Kim, Yong-Tae;Kim, Yu Jin;Jeong, Ji Woong;Jang, Sung Sik;Ahn, Young-Tae;Sim, Jae-Hun;Huh, Chul-Sung;Chung, Dae Kyun;Lee, Jung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1583-1591
    • /
    • 2014
  • Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVB-induced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

Effects of Olanzapine on Gene Expression Changes in MK-801-induced Neurotoxicity Using a High-density DNA Microarray

  • Jo, Jae-Hoon;Kim, Seung-Jun;Yeon, Jong-Pil;Oh, Moon-Ju;Seo, Hye-Myung;Hwang, Seung-Yong;Kim, Sang-Kyum;Kim, Bong-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.282-291
    • /
    • 2007
  • Although the etiology of schizophrenia is known to be linked with the disturbance of glutamatergic and dopaminergic neurotransmission, little is known about the relationship between gene expression and the disease process. To identify genes related to abnormalities in glutamatergic and dopaminergic function, we investigated the effects of olanzapine in the changes of mRNA levels in the animal model of schizophrenia, using a high-density DNA microarray. Olanzapine (3.0 mg/kg, i.p.) significantly reduced hyperlocomotive activities, which was induced by MK-801 (1.0 mg/kg, i.p.). We identified that the expression of 719 genes were significantly altered more than two folds in the prefrontal cortex of the rats treated with MK-801. We selected 15 genes out of them by the changes of the expression pattern in the treatment of Olanzapine and/or MK801 for the further confirmation in RT-PCR. The administration of MK-801 increased the expression of 7 genes (NOS3, Hspb1, Hspa1a, CRH, Serpine1, Igfbp6, Snf1lk) and decreased the expression of 1 gene (Aldh1a2), which was attenuated by olanzapine. One gene (Prss12) was up-regulated after olanzapine treatment although it did not show the significant changes after MK-801 treatment. These results showed that antipsychotic drug, such as olanzapine, may alter the gene expression patterns, which were accompanied by MK-801-induced psychosis. Our results also provide us high-density DNA microarray technology could be potential approaches to find the candidate molecules for the therapeutics and also for the early diagnosis of psychiatric diseases.

Black Rice (Oryza sativa L. var. japonica) Hydrolyzed Peptides Induce Expression of Hyaluronan Synthase 2 Gene in HaCaT Keratinocytes

  • Sim, Gwan-Sub;Lee, Dong-Hwan;Kim, Jin-Hwa;An, Sung-Kwan;Choe, Tae-Boo;Kwon, Tae-Jong;Pyo, Hyeong-Bae;Lee, Bum-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.271-279
    • /
    • 2007
  • Black rice (Oryza sativa L. var. japonica) has been used in folk medicine in Asia. To understand the effects of black rice hydrolyzed peptides (BRP) from germinated black rice, we assessed the expression levels of about 20,000 transcripts in BRP-treated HaCaT keratinocytes using human 1A oligo microarray analysis. As a result, the BRP treatment showed a differential expression ratio of more than 2-fold: 745 were activated and 1,011 were repressed. One of the most interesting findings was a 2-fold increase in hyaluronan synthase 2 (HAS2) gene expression by BRP. Semiquantitative RT-PCR showed that BRP increased HAS2 mRNA in dose-dependent manners. ELISA showed that BRP effectively increased hyaluronan (HA) production in HaCaT keratinocytes.

Hormonal Regulation of Acetyl-CoA Carboxylase Promoter I Activity in Rat Primary Hepatocytes (흰쥐의 간세포에서 호르몬에 의한 Acetyl-CoA Carboxylase Promoter I Activity 조절에 대한 연구)

  • 이막순;양정례;김윤정;김영화;김양하
    • Journal of Nutrition and Health
    • /
    • v.35 no.2
    • /
    • pp.207-212
    • /
    • 2002
  • Acetyl-CoA carboxylase (ACC) is the enzyme that controls no devo fatty acid biogynthesis, and this enzyme catalyzes the carboxylation pathway of acetyl-CoA to malonyl-CoA. Acetyl-CoA carboxylase gene expression was regulated by nutritional and hormonal status. The present study was performed to identify the regulation mechanism of ACC gene promoter I. The fragments of ACC promoter I -1.2-kb region wert recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary hepatocytes from the rat were used to investigate the hormonal regulation of ACC promoter I activity. ACC PI (-1.2)/Luc plasmid was trtransferred into primary hepatocytes using lipofectin. Activity of luciferase was increased two-fold by 10-9M, three-fold by 10-8M, 10-6M, 3.5-fold by 10-6M, and 4.5-fold by 10-7M insulin treatment, respectively. In the presence of dexamethasone (1 $\mu$M), the effects of insulin increased about 1.5-fold, showing the additional effects of dexamethasone. Moreover, the activity of luciferase increased with insulin+dexamethasone, insulin+T3, dexamethasone+T3, and dexamethasone+insulin+T3 treatment approximately 6-, 4-, 6.5-, and 10-fold, respectively. Therefore it can be postulated that 1) these hormones coordinately regulate acetyl-CoA caroxylase gene expression via regulation of promoter activity, 2) the -1.2-kb region of ACC promoter I may have the response element sequences for insulin, dexamethasone, and T3.

Expression Analysis of ${\beta}$-Ketothiolase and Acetoacetyl-CoA Reductase of Rhodobacter sphaeroides

  • KHO, DHONG HYO;CHEOL YUN JEONG;JEONG JUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1031-1037
    • /
    • 2001
  • By a sequential action of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, two molecules of acetyl-CoA re converted into D-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyrate (PHB) of rhodobacter sphaeroides. The ${\beta}$-ketothiolase gene, phbA, and acetoacetyl-CoA reductase gene, phbB, were cloned and analyzed for their expression. Enzyme activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase showed constitutive levels during aerobic and photoheterotrophic growth of R. sphaeroides. In addition, no difference of each enzyme activity was observed between cells grown aerobically and photoheterotrophically. The constitutive level of the enzyme activities are regulated according to the growth phases along with growth conditions. Thus, phbAB expression is not determinative in regulating the PB content. On the other hand, phbA-deleted cell AZI accumulated only $10\%$ PHB of the wild-type, and an elevated dosage of phbAB in trans in R. sphaeroides resulted in a higher content of PHB, indicating that phbAB codes for the enzymes responsible for providing the main supply of subsyrate for PHB synthase. PHB formation by an alternative pathway that does not does not depend on the phbA-and phbB-coding enzymes is also proposed.

  • PDF