• 제목/요약/키워드: Co-Cr dental alloy

검색결과 73건 처리시간 0.023초

Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness

  • Ayyildiz, Simel;Soylu, Elif Hilal;ide, Semra;Kilic, Selim;Sipahi, Cumhur;Piskin, Bulent;Gokce, Hasan Suat
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.471-478
    • /
    • 2013
  • PURPOSE. The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS. Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring $4{\times}2{\times}2$ mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. RESULTS. The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness ($48.16{\pm}3.02$ HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness ($27.40{\pm}3.98$ HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 ${\AA}$). CONCLUSION. After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with the materials that are used in clinic for prosthodontics treatments.

Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

  • Kokolis, John;Chakmakchi, Makdad;Theocharopoulos, Antonios;Prombonas, Anthony;Zinelis, Spiros
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSE. The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS. Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a $45^{\circ}$ bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (${\varepsilon}$) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (${\alpha}$=.05) and Weibull analysis where Weibull modulus m and characteristic strength ${\sigma}_0$ were identified. Fractured surfaces were imaged by a SEM. RESULTS. SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ${\varepsilon}$, m and ${\sigma}_0$) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION. The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability.

질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향 (The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy)

  • 박찬;이경훈;임현필
    • 구강회복응용과학지
    • /
    • 제32권3호
    • /
    • pp.194-201
    • /
    • 2016
  • 목적: 본 연구는 Co-Cr, Ti-6Al-4V 합금에 Zirconium Nitride (이하 ZrN) 적용 시, 의치상 레진과의 접착력을 비교하는 것이다. 연구 재료 및 방법: Co-Cr, Ti-6Al-4V 디스크(직경 10 mm, 두께 2.5 mm)를 각각 14개씩 제작하였고, ZrN 코팅에 따라 2개의 그룹으로 나누었다. Primer로 시편 전처리 후, 의치상 레진(직경 6 mm, 두께 5 mm)을 부착하였다. 표면 측정기를 이용하여 시편의 거칠기를 측정한 후, 만능 시험기를 이용하여 전단결합강도를 측정하였으며, 이원분산분석으로 통계 분석하였다. 시편 표면과 파절 양상을 주사전자현미경을 이용하여 관찰하였다. 결과: ZrN을 코팅한 시편에서 유의하게 높은 표면 거칠기를 나타내었고(P < 0.05), 전단결합강도는 낮았다(P < 0.001). ZrN 코팅 시편에서는 혼합성 파절과 부착성 파절이 함께 나타났다. 결론: Co-Cr, Ti-6Al-4V 합금에서 ZrN 코팅 처리는 의치상 레진과의 결합력을 약화시켰다.

주조 형상기억 니켈-티타늄 합금의 초탄성 (SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY)

  • 최동익;최목균
    • 대한심미치과학회지
    • /
    • 제3권1호
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

Correlation between microhardness and wear resistance of dental alloys against monolithic zirconia

  • Cha, Min-Sang;Lee, Sang-Woon;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권3호
    • /
    • pp.127-135
    • /
    • 2021
  • Purpose. The aim of this study is to compare the hardness according to the conditions of metal alloys. Moreover, the correlation between the cast crown hardness before and after wear testing and the degree of wear for each dental alloy was assessed. Materials and Methods. Cast crowns of three metal alloys (Co-Cr, gold, and Ni-Cr alloys) opposing smooth-surface monolithic zirconia were used. The Vickers microhardness of the ingot (which did not undergo wear testing) and the cast crown before and after wear testing were measured for each alloy. Two-way ANOVA and Scheffé tests were used to compare the measured hardness values. Moreover, the Pearson correlation coefficient was used to evaluate the relationship between the surface hardness and the wear of the cast crown (α=.05). Results. There was no significant difference in the hardness before and after wear testing for the gold alloy (P>.05); however, the hardness of the worn surface of the cast crown increased compared to that of the cast crown before the wear tests of Ni-Cr and Co-Cr alloys (P<.05). Furthermore, there was no correlation between the wear and hardness of the cast crown before and after wear testing for all three metal alloys (P>.05). Conclusion. There was a significant difference in hardness between dental alloys under the same conditions. No correlation existed between the surface hardness of the cast crown before and after wear testing and the wear of the cast crown.

도재용착용 비귀금속 합금(Co-Cr)과 세라믹의 소성술식에 따른 전단결합강도 분석 (An analysis of shear bond strength of Co-Cr alloy of porcelain fused to metal and ceramic)

  • 임중재
    • 대한치과기공학회지
    • /
    • 제39권3호
    • /
    • pp.153-159
    • /
    • 2017
  • Purpose: In this study, a corresponding porcelain coating material was applied to dental Co-Cr metal among PFM. Methods: The bonding strength of the fired specimens was measured by a three-point flexural rigidity test. SEM/EDS was used to observe the surface component of specimens. Results: First, All groups were higher than the minimum bonding strength of 25 MPa specified in ISO 9693 for dental metal-ceramics specimens. Second, The bonding strength of control group(WO) is 44.64 MPa. Experimental group DM was 35.45 MPa and DP was 31.82 MPa(P<0.05). Tukey's HSD tests results have shown that the bonding strength in control group(WO) is higher than that of experimental group(DM, DP). Third, In the case of metal - porcelain bonding strength, the application of opaque porcelain and firing were higher than those of the group treated with degassing process. Conclusion: The bonding strength was higher when the powder opaque porcelain was applied than the paste opaque porcelain.

수종 임플랜트 금속의 내식성에 관한 전기화학적 연구 (AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS)

  • 전진영;김영수
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

국소의치금속상과 Fe-Cr계 wire를 soldering 할때 발생한 계면의 성분변화 (Interfacial Elemental Change When Soldering the Nico-crally and Fe-Cr-Ni Alloy)

  • 조성암;고현권
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.49-54
    • /
    • 1989
  • The purpose of this study was to investigate the interfacial elemental change when solding the Ni-Co-Cr dental removable partial denture alloy and Fe-Cr-Ni wrought wire alloy with Ag-Cu-Zu Silver solder, by EDXA, EPMA, to investigate the appropriateness of clinical usefullness for repair the fractured clasps of removable partial dentive. The result of this study was as follows: 1. The Ni element of major component of Ticonium penetrate into the silver solder 2. The movement Age element of silver solder into Fe-Cr-Ni wire was not significant, by EDXA and EPMA.

  • PDF

반복 사용된 치과용 비귀금속에 의한 주조체의 식각표면에 대한 연구 (The Etched Surface of the Repeatedly Cast Dental Base Metal Alloy)

  • 이선형
    • 대한치과의사협회지
    • /
    • 제23권7호통권194호
    • /
    • pp.577-583
    • /
    • 1985
  • The purpose of this investigation was to evaluate scanning electron micrographs of repeatedly cast base metal alloy. For this study two Ni-Cr-Be alloys were used; Rexillium III and Verabond. They were repeatedly cast without addition o new alloy melting with an electric resistant furnace (Castron 8, Yoshida dental equipment Mfg.Co.). They were etched with 10% H₂SO₄ Sol. at 300mA/㎠ for 3 minutes with the use of metal etching unit Oxyetch (OXY dental product Inc.), and ultrasonic cleaning in 18% HC1 Sol. was done. Etched surfaces were examined under a SEM at x 200 and x 750. The surfaces are shown in legends.

  • PDF

도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가 (SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti)

  • 이정환;안재석
    • 치위생과학회지
    • /
    • 제9권2호
    • /
    • pp.153-160
    • /
    • 2009
  • 본 연구는 금속-도재 수복물 제작에 사용되는 Ni-Cr alloy와 Co-Cr alloy, 그리고 티타늄에 gold bonding agent를 도포하여 Au coating 층을 형성하였다. 각 시편의 절단면을 전자현미경으로 Au coating 층과 porcelain bonder, 그리고 불투명 도재간의 결합을 관찰하였고, 각 계면의 상태를 SEM/EDS 방법으로 조사하였다. 실험에서 사용된 재료와 방법의 범위 내에서 다음과 같은 결론을 얻었다. 1. Gold bonding agent를 사용하여 형성한 Au coating 층은 미세다공성을 가진 구조로 판단되었다. 2. Au coating 층과 porcelain bonder 그리고 불투명 도재간의 결합은 잘 일어나 보였다. 3. Au coating 층은 도재 소성과정에서 발생하는 산화층의 확산을 제한하는 것으로 관찰되었다.

  • PDF