• Title/Summary/Keyword: Co-Based alloy

Search Result 248, Processing Time 0.033 seconds

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

A Solution for Diffusion Equations and the Distribution of Alloying Elements in Sintered Alloys

  • Wang, Chonglin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.72-73
    • /
    • 2006
  • The error function can be calculated based on the Simpson method through a subroutine program. An integration program by FORTRAN language was made for diffusion equations of extended source with infinite extent and limited extent. The results on some alloying elements such as C, Co, Cr, Mn, Mo, Ni and V's diffusion in iron, showed the diffusion distance for Ni and Mo can only be $1{\sim}3\;{\mu}m$ and more distance for Co at common sintering temperature of $1120^{\circ}C$. To refine the particle size of the added elements down to a scale of micrometers is an effective way to get homogeneous distribution.

  • PDF

Determination of Dynamic Crack Initiation Toughness Using Instrumented Charpy Impact Test in WC-Co Alloy (계장화 샬피충격시험을 이용한 WC-Co 초경합금의 동적 균열개시인성치 결정)

  • 이억섭;박원구;홍성경;윤경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.688-696
    • /
    • 1995
  • Cemented carbides, best known for their superior mechanical properties such as high strength, high hardness and high wear resistance, have a wide range of industrial applications including metal working tools, mining tools, and wear resistance components. The cobalt has been used as a binder in the WC-based hard composites due to its outstanding wetting and adhesion characteristics even though its expensiveness. Therefore many studies attempted to find a better substitute for cobalt as binder to decrease production costs. This investigation is a pre-step to study dynamic fracture characteristic evaluation of a WC-Co hardmetal were evaluated by using the instrumented Charpy impact testing procedures. It was found that the dynamic characteristics of used strain amplifier were very important experimental factors to extract valid dynamic fracturing data in WC-Co specimens. It was suggested by showing some experimental examples that when we wished to evaluate dynamic fracture toughness for cemented carbide composites by using the instrumented Charpy impact testing procedure, a careful attention must be given to obtain valid results.

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.

OPTIMAL SPUTTERING CONDITIONS FOR HIGH-DENSITY MAGNETIC RECORDING MEDIA BY FTS

  • Noda, Kohki;Kawanabe, Takashi;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.824-828
    • /
    • 1996
  • Co-based alloy thin films ddeposited by fcing targets sputtering(FTS) were investigated for use in high-density magnetic recording media to determine how their magnetic properties are dependent on the sputtering conditions, and thus to find appropriate parameters that allow the sputtering and thin films to meet the specificiations for magnetic properties. FTS can discharge at lower working gas pressure than other sputtering methods such as dcmagnetron sputteing because the plasma is sufficiently confined by a magnetic field applied perpendicular to both of the target planes, which results in plasma-free substrates. Co-Cr-Ta films were deposited by FTS on glass and silicon substrates at substrate temperature between room temperature and $350^{\circ}C$, and at argon gas pressure between 0.1 and 10mTorr. The films were also deposited on polyimide tapes at substrate temperature of $130^{\circ}C$ and argon gas pressure of 1 mTorr. The effective advantages of Ta as an additional element were investigated, using the same films on the tapes. As a result of the experiment, it was found that better magnetic properties were obtained in the ranges of higher temperature and lower argon gas pressure with background pressure in thr range of $1.5 \times 10^{-6}$ Torr. Ta addition at 2 to 4 atomic percent almost havled the Co-Cr grain sizes, indicating that Ta addition at an appropriate atomic percent is effective for improving the microstructure and characteristics of Co-Cr films.

  • PDF

The Oxide Coating Effects on the Magnetic Properties of Amorphous Alloys

  • 배영제;Jang, Ho G.;Chae, Hee K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.621-625
    • /
    • 1996
  • A variety of metal oxides were coated by sol-gel process from their metal alkoxides on the ribbons of Co-based and Fe-based amorphous alloys, and the effects of surface oxide coating on the magnetic properties of the alloy are investigated. The core loss is found to be reduced significantly by the oxide coating, the loss reduction becoming more prominent at higher frequencies. The shape of the hystersis loop is also dependent upon the kind of the coated metal oxide. The coatings of MgO, SiO2, MgO·SiO2 and MgO·Al2O3 induce tensile stress into the Fe-based ribbon whereas those of BaO, Al2O3, CaO·Al2O3, SrO·Al2O3 and BaO·Al2O3 induce compressive stress. These results may be explained by the modification of domain structures via magnetoelastic interactions with the shrinkage stress induced by the sol-gel coating.

Shear bond strength of Universal bonding systems to Ni-Cr alloy (니켈-크롬 합금에 대한 다용도 접착 시스템의 전단결합강도)

  • Song, So-Yeon;Son, Byung-Wha;Kim, Jong-Yeob;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the shear bond strength between Ni-Cr alloy and composite resin using universal adhesive systems coMPared to conventional method using metal primers. Materials and methods: For this study, a total of 120 cast commercial Ni-Cr alloy (Vera Bond 2V) disks were embedded in acrylic resin, and their surfaces were smoothed with silicon carbide papers and airborne-particle abrasion. Specimens of each metal were divided into 6 groups based on the combination of metal primers (Metal primer II, Alloy primer, Metal & Zirconia primer, MKZ primer) and universal adhesive systems (Single Bond Universal, All Bond Universal). All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strength testing was performed with a universal testing machine at a cross head speed of 1 m/min. Data (MPa) were analyzed using one-way ANOVA and the post hoc Tukey's multiple comparison test (${\alpha}$=.05). Results: There were significant differences between Single Bond Universal, All Bond Universal, Metal Primer II and Alloy Primer, MKZ Primer, Metal & Zirconia Primer (P<.001). Conclusion: Universal Adhesive system groups indicated high shear bond strength value bonded to Ni-Cr alloy than that of conventional system groups using primers except Metal Primer II. Within the limitations of this study, improvement of universal adhesive systems which can be applied to all types of restorations is recommended especially non-precious metal alloy. More research is needed to evaluate the effect of silane inclusion or exclusion in universal adhesive systems.

Electrochemical Properties of 3D Cu-Sn Foam as Anode for Rechargeable Lithium-Ion Battery (3D-foam 구조의 구리-주석 합금 도금층을 음극재로 사용한 리튬이온배터리의 전기화학적 특성 평가)

  • Jung, Minkyeong;Lee, Gibaek;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • Sn-based lithium-ion batteries have low cost and high theoretical specific capacity. However, one of major problem is the capacity fading caused by volume expansion during lithiation/delithiation. In this study, 3-dimensional foam structure of Cu-Sn alloy is prepared by co-electrodeposition including large free space to accommodate the volume expansion of Sn. The Cu-Sn foam structure exhibits highly porous and numerous small grains. The result of EDX mapping and XPS spectrum analysis confirm that Cu-Sn foam consists of $SnO_2$ with a small quantity of CuO. The Cu-Sn foam structure electrode shows high reversible redox peaks in cyclic voltammograms. The galvanostatic cell cycling performances show that Cu-Sn foam electrode has high specific capacity of 687 mAh/g at a current rate of 50 mA/g. Through SEM observation after the charge/discharge processes, the morphology of Cu-Sn foam structure is mostly maintained despite large volume expansion during the repeated lithiation/delithiation reactions.

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF

Effects of Minor Alloying Elements on the Microstructure and Mechanical Properties of High Conductivity Cu-Mg-P Base Alloys (Cu-Mg-P계 고전도성 합금의 미세조직 및 기계적 성질에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Kim, Hyun-Gil
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.64-68
    • /
    • 2008
  • The microstructure of Cu-Mg-P base alloys were significantly affected by small amounts of Fe and Co additions, however the tensile properties and electrical conductivity of the Cu alloys were mainly determined by the fabrication process. Relatively high electrical conductivity (> 80% IACS) was obtained in the all Cu-Mg-P based alloys when they were finally aged at $480^{\circ}C$. Tensile properties could be significantly enhanced by final cold rolling, especially at extremely low temperatures. Softening of cold-rolled alloys took place at about $450^{\circ}C$ owing to recovery and recrystallization, but it was delayed up to $500^{\circ}C$ in the Fe-added alloy.