• Title/Summary/Keyword: Co film

Search Result 2,545, Processing Time 0.036 seconds

A Study on the Mechanical Properties of CNx Thin Films Deposited by Asymmetric Bipolar Pulsed D.C. Sputtering (비대칭 펄스 DC 반응성 스퍼터링 법에 의한 CNx 박막의 기계적 특성에 관한 연구)

  • Kim, J.H.;Kim, D.W.;Cha, B.C.;Kim, S.K.;Lee, B.S.;Jeon, S.H.;Kim, D.I.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.290-297
    • /
    • 2009
  • In case of using Asymmetric Bipolar Pulsed DC (ABPD) power generator, thin film is efficiently deposited as ions are getting higher energy by suppressing target poisoning and electric arc. In this article, the mechanical properties of CNx thin films deposited on the STS 316L were compared with DC and ABPD power generators. The CNx thin films deposited with ABPD clearly improved wear resistance by higher ratio of sp3CN as compared with DC. Nb interlayer affected to increase the value of 10N of adhesion between CNx thin films and substrate. But, CNx thin films deposited with ABPD couldn't endure to wear load and decreased wear resistance as the films were too thinner than substrate. Nevertheless the higher substrate bias energy applied to perform the dense films, it wasn't shown benefits about the wear properties from DC sputtering. But, in case of using ABPD sputtering, the wear resistance was largely improved without changing morphology despite of thin films.

Wear Resistance of c-BN Surface Modified 316L Austenitic Stainless Steel by R.F. Sputtering (R.F. sputtering 방법에 의해 c-BN 표면처리된 316L 오스테나이트계 스테인리스 강의 내마모특성 향상)

  • Lee, Kwang-Min;Jeong, Se-Hoon;Park, Sung-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.194-198
    • /
    • 2010
  • Cubic boron nitride (c-BN) is a promising material for use in many potential applications because of its outstanding physical properties such as high thermal stability, high abrasive wear resistance, and super hardness. Even though 316L austenitic stainless steel (STS) has poor wear resistance causing it to be toxic in the body due to wear and material chips, 316L STS has been used for implant biomaterials in orthopedics due to its good corrosion resistance and mechanical properties. Therefore, in the present study, c-BN films with a $B_4C$ layer were applied to a 316L STS specimen in order to improve its wear resistance. The deposition of the c-BN films was performed using an r.f. (13.56 MHz) magnetron sputtering system with a $B_4C$ target. The coating layers were characterized using XPS and SEM, and the mechanical properties were investigated using a nanoindenter. The friction coefficient of the c-BN coated 316L STS steel was obtained using a pin-on-disk according to the ASTM G163-99. The thickness of the obtained c-BN and $B_4C$ were about 220 nm and 630 nm, respectively. The high resolution XPS spectra analysis of B1s and N1s revealed that the c-BN film was mainly composed of $sp^3$ BN bonds. The hardness and elastic modulus of the c-BN measured by the nanoindenter were 46.8 GPa and 345.7 GPa, respectively. The friction coefficient of the c-BN coated 316L STS was decreased from 3.5 to 1.6. The wear property of the c-BN coated 316L STS was enhanced by a factor of two.

A study on point defect for thermal annealed CuGaSe2 single crystal thin film (열처리된 CuGaSe2 단결정 박막의 점결함연구)

  • 이상열;홍광준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.154-154
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for CuGaSe2 single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe2, it was found tetragonal structure whose lattice constant at and co were 5.615 ${\AA}$ and 11.025 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaSe2 mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (MWE) system. The source and substrate temperatures were Slot and 450$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (UXD). The carrier density and mobility of CuGaSe2 single crystal thin films measured with Hall effect by van der Pauw method are 5.0l${\times}$10$\^$17/ cm$\^$-3/ and 245 $\textrm{cm}^2$/V$.$s at 293K, respectively. The temperature dependence of the energy band gap of the CuGaSe2 obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 1.7998 eV - (8.7489${\times}$10$\^$-4/ eV/K)T$^2$/(T + 335 K. After the as-grown CuGaSe2 single crystal thin films was annealed in Cu-, Se-, and Ca-atmospheres, the origin of point defects of CuGaSe2 single crystal thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of V$\_$CU/, V$\_$Se/, Cu$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted CuGaSe2 single crystal thin films to an optical n-type. Also, we confirmed that Ga in CuGaSe2/GaAs did not form the native defects because Ga in CuGaSe2 single crystal thin films existed in the form of stable bonds.

  • PDF

Low Temperature Effects on the Nitrification in a Nitrogen Removal Fixed Biofilm Process Packed with SAC Media

  • Jang, Se-Yong;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A fixed biofilm reactor system composed of anaerobic, anoxic(1), anoxic(2), aerobic(1) and aerobic(2) reactor was packed with synthetic activated ceramic (SAC) media and adopted to reduce the inhibition effect of low temperature on nitrification activities. The changes of nitrification activity at different wastewater temperature were investigated through the evaluation of temperature coefficient, volatile attached solid (VAS), specific nitrification rate and alkalinity consumption. Operating temperature was varied from 20 to $5^{\circ}C$. In this biofilm system, the specific nitrification rates of $15^{\circ}C$, $10^{\circ}C$ and $5^{\circ}C$ were 0.972, 0.859 and 0.613 when the specific nitrification rate of $20^{\circ}C$ was assumed to 1.00. Moreover the nitrification activity was also observed at $5^{\circ}C$ which is lower temperature than the critical temperature condition for the microorganism of activated sludge system. The specific amount of volatile attached solid (VAS) on media was maintained the range of 13.6-12.5 mg VAS/g media at $20{\sim}10^{\circ}C$. As the temperature was downed to $5^{\circ}C$, VAS was rapidly decreased to 10.9 mg VAS/g media and effluent suspended solids was increased from 3.2 mg/L to 12.0 mg/L due to the detachment of microorganism from SAC media. And alkalinity consumption was lower than theoretical value with 5.23 mg as $CaCO_3$/mg ${NH_4}^+$-N removal at $20^{\circ}C$. Temperature coefficient (${\Theta}$) of nitrification rate ($20^{\circ}C{\sim}5^{\circ}C$) was 1.033. Therefore, this fixed film nitrogen removal process showed superior stability for low temperature condition than conventional suspended growth process.

Microstructure and Thermal Insulation Properties of Ultra-Thin Thermal Insulating Substrate Containing 2-D Porous Layer (2차원 기공층을 포함하는 초박형 단열기판의 미세구조 및 단열 특성)

  • Yoo, Chang Min;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Sung Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.683-687
    • /
    • 2017
  • We investigated the structure of an ultra-thin insulating board with low thermal conductivity along z-axis, which was based on the idea of void layers created during the glass infiltration process for the zero-shrinkage low-temperature co-fired ceramic (LTCC) technology. An alumina and four glass powders were chosen and prepared as green sheets by the tape casting method. After comparison of the four glass powders, bismuth glass was selected for the experiment. Since there is no notable reactivity between alumina and bismuth glass, alumina was selected as the supporting additive in glass layers. With 2.5 vol% of alumina powder, glass green sheets were prepared and stacked alternately with alumina green sheet to form the 'alumina/glass (including alumina additive)/alumina' structure. The stacked green sheets were sintered into an insulating substrate. Scanning electron microscopy revealed that the additive alumina formed supporting bridges in void layers. The depth and number of the stacking layers were varied to examine the insulating property. The lowest thermal conductivity obtained was 0.23 W/mK with a $500-{\mu}m-thick$ substrate.

Temperature and Gas Sensing Multifunctional Ceramic Sensors (온도 가스 감지 다기능성 세라믹 복합 센서)

  • Moon, Hi-Gyu;Shim, Young-Seok;Kim, Do-Hong;Ryu, Jung-Ho;Kim, Jin-Sang;Park, Hyung-Ho;Park, Dong-Soo;Yoon, Seok-Jin;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.646-650
    • /
    • 2012
  • Multifunctional structures with two kinds of materials have been intensively investigated in order to improve their electrical characteristic with two functions simultaneously. However, the research regarding of multifunctional ceramic sensor is still in a preliminary stage and how to integrate them with low-cost and high-yield mass production process remains a challenge issue. In this study, we fabricated the multifunctional ceramic sensor composed of temperature and gas sensors. Moreover, we investigated the CO sensing properties of three dimensional nanostuctured $Nb_2O_5$ thin film gas sensors fabricated with silica ($SiO_2$ nanosphere (${\O}$= 750 nm). Compared to plain films, the nanostructured films show enhanced gas sensing of greater sensitivity and a faster response. This result reveals that significantly increased sensitivity is an increase in the effective surface area for the adsorption of gas molecules.

Physical Property and Morphology Observation of HepG2 Cells by Various Concentration of Paraquat (파라쿼트 농도에 따른 HepG2 세포의 물리적 특성 변화와 실시간 모폴로지 관찰)

  • Lee, Dong-Yun;Kang, Hyen-Wook;Muramatsu, Hiroshi;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1232_1233
    • /
    • 2009
  • Paraquat is well-known to cause hepatotoxic responses in human and other mammal species. In solution, it forms free radicals and charge-transfer complex of which formation plays an important role in determination of its biological activity in the presence of various anions. The HepG2 cells were cultured onto a quartz crystal sensor which is possible to detect the density and a viscosity changes using the resonance frequency (F) and the resonance resistance (R). The plot of F-R diagram is able to explain the rheological change of cells onto the surface of the quartz crystal sensor. In this paper, we investigated the physical properties of the HepG2 cells cultured onto a ITO electrode of the quartz crystal sensor according to the paraquat injection at various concentrations (100 mM, 10 mM, 1 mM). We also observed the morphological changes with a micro CCD camera, simultaneously. The HepG2 cells were cultured onto the ITO electrode surface of the quartz crystal modified a collagen film in $CO_2$ incubator. After the paraquat injection, we observed the changes of the morphologies by the micro CCD camera depending on time and analyzed the physical changes of cells on the electrode surface of quartz crystal using F-R diagram. From all results, we proved the effect of paraquat at various concentrations which is led to an apoptosis such as weakening and death of the cells by oxidation and reduction reaction that were produced the superoxide anions and other free radicals.

  • PDF

Effects of Water Stress on Leaf Orientation, Apparent Photosynthetic Rate, Transpiration Rate, Yield and Its Related Traits in Soybean Plants (한발조건이 콩식물체의 엽운동, 광합성능, 증산량, 수량 및 관련 형질에 미치는 영향)

  • 천종은;김진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.313-319
    • /
    • 1992
  • To investigate effects of water stress on apparent photosynthetic, transpiration rates, leaf orientation, yield and its related traits, four soybean varieties were planted on the Wagner pots in a plastic house covered with polyethylene film. As the light intensity and leaf temperature in a day increased, the movement of central leaflet in the second leaf of main stem occurred earlier than that of the lateral leaflet. The apparent photosynthetic rate of the central leaflet was higher than that of the lateral leaflet, but light intercept and leaf temperature of lateral leaflet were higher than those of the central leaflet. The apparent photosynthetic rate had highly positive correlation with the photon flux density, stomatal conductance and temperature, respectively. The photon flux density, stomatal conductance, transpiration and photosynthetic rates in the control were significantly higher than those in the water stress plot. The yield and its related traits in the water stress plot became decreased significantly in comparison with the control.

  • PDF

Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films (스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향)

  • Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.

Simulation of plate deformation due to line heating considering water cooling effects (수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션)

  • Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2470-2476
    • /
    • 2011
  • Inherent strain method, a hybrid method of experimental and numerical, is known to be very efficient in predicting the plate deformation due to line heating. For the simulation of deformation using inherent strain method, it is important to determine the magnitude and the region of inherent strain properly. Because the phase of steel transforms differently depending on the actual speed of cooling following line heating, it should be also considered in determining the inherent strain. A heat transfer analysis method including the effects of impinging water jet, film boiling, and radiation is proposed to simulate the water cooling process widely used in shipyards. From the above simulation it is possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision.