• Title/Summary/Keyword: Co film

Search Result 2,543, Processing Time 0.025 seconds

Reflective Twist Nematic Liquid Crystal Display For High Reflectance.

  • Son, Ock-Soo;Park, Young-Il;Beak, Do-Hyoen;Son, Gon;Suh, Dong-Hea
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.292-294
    • /
    • 2008
  • We have developed new reflective LCD for Mixed twist nematic LC mode with high quality image. We have found out an optimal twist angle of LC and optical film's axis by simulation. Also we measured electro-optic characteristics for new design panel. As a result, high reflectance and wide viewing angle characteristics were achieved.

  • PDF

The Effect of Sputtering Conditions on Magnetic Properties of CoCrMo/Cr Magnetic Thin Film (CoCrMo/Cr 자성박막의 제조조건이 자기적성질에 미치는 영향)

  • 박정용;남인탁;홍양기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.320-324
    • /
    • 1993
  • The effect of sputtering conditions on magnetic properties of CoCrMo/Cr magnetic thin film was investigated. Substrate temperature were controlled from R. T to $250^{\circ}C$. The thickness changes of Cr underlayer and CoCrMo magnetic layer were in the range of $1000-2500\AA$ and $300-800\AA$, respectively. Grain size was found to be decreased with increasing magnetic layer thickness(from $500\AA$ to $800\AA$). CoCrMo magnetic layer microstructure showed relatively small dependence on Cr underlayer thickness, substrate temperature. Coercivity increased with increasing Cr underlayer, magnetic layer thickness and substrate temperature. CoCrMo/Cr thin film showed a coercivity of 880 Oe in $700\AA$ magnetic layer thickness and $1000\AA$ Cr underalyer thickness.

  • PDF

Magnetic Properties and Microstructure of Co Thin Films by RF-diode Sputtering Method (RF-diode Sputtering법으로 제작한 Co박막의 자기특성과 미세구조)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.159-165
    • /
    • 2018
  • In order to increase the efficiency of the sputtering method widely used in thin film fabrication, a dc sputtering apparatus which supplies both high frequency and magnetic field from the outside was fabricated, and cobalt thin film was fabricated using this apparatus. The apparatus can independently control the applied voltage, the target-substrate distance, and the target current, which are important parameters in the sputtering method, so that a stable glow discharge is obtained even at a low gas pressure of $10^{-3}$ Torr. The fabrication conditions using the sputtering method were mainly performed in $Ar+O_2$ mixed gas containing about 0.6 % oxygen gas under various Ar gas pressures of 1 to 30 mTorr. The microstructure of Co thin films deposited using this apparatus was examined by electron diffraction pattern and X-ray techniques. The magnetic properties were investigated by measuring the magnetization curves. The microstructure and magnetic properties of Co thin films depend on the discharge gas pressure. The thin film fabricated at high gas pressure showed a columnar structure containing a large amount of the third phase in the boundary region and the thin film formed at low gas pressure showed little or no columnar structure. The coercivity in the plane was slightly larger than that in the latter case.

Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping (Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy;Hong, Soon-Ku;Ngo, Trong Si;Lee, Jeongkuk;Park, Yun Chang;Hong, Sun Ig;Na, Young-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1285-1292
    • /
    • 2018
  • Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation (공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성)

  • Ji, In-Geol;Han, Kyu-Suk;Oh, Jae-Hee;Ko, Tae-Gyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • Park, W.H.;Kim, Y.J.;Keum, M.J.;Ka, C.H.;Son, I.H.;Choi, H.W.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta\theta_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 200Oe. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.

  • PDF

CO gas sensitivity of ZnO and ZnO-CuO thick films (ZnO와 ZnO-CuO후막의 일산화탄소 감응특성)

  • 전석택;최우성
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.819-824
    • /
    • 1996
  • We have investigated the temperature dependence of CO gas sensitivity for ZnO and ZnO-CuO thick films at 200 ppm CO gas, where those films were prepared by thermal transformation. The ZnO thick film shows the maximum sensitivity of -4 at >$300^{\circ}C$ On the other hand, ZnO-CuO(more than 1mol%) thick film shows that the maximum sensitivity reduced to less than 1.5. The decrease in sensitivity of CO gas with increasing the CuO contents is due to the decrease of the oxygen absorption in thick films.

  • PDF

Initial Magnetization and Coercivity Mechanism in Amorphous TbxCo1-x Thin Films with Perpendicular Anisotropy

  • Kim, Tae-Wan;Lee, Ha-Na;Lee, Hyun-Yong;Lee, Kyoung-Il
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.169-172
    • /
    • 2010
  • The coercivity mechanism in permanent magnets was analyzed according to the effects of domain nucleation and domain wall pinning. The coercivity mechanism of a TbCo thin film with high perpendicular magnetic anisotropy was considered in terms of the local inhomogeneity in the thin film. The initial magnetization curves of the TbCo thin films demonstrated domain wall pinning to be the main contributor to the coercivity mechanism than domain nucleation. Based on the coercivity model proposed by Kronmuller et al., the inhomogeneity size acting as a domain wall pinning site was determined. Using the measured values of perpendicular anisotropy constant ($K_u$), saturation magnetization ($M_s$), and coercivity ($H_c$), the inhomogeneity size estimated in a TbCo thin film with high coercivity was approximately 9 nm.

Synthesis of diamond thin film on WC-Co by RF PACVO (고주파 플라즈마 CVD에 의한 초경합금상에 다이아몬드 박막의 합성)

  • 김대일;이상희;박종관;박구범;조기선;박상현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.452-455
    • /
    • 2000
  • Diamond thin films were synthesized on WC-Co substrate at various experimental parameters using 13.56MHz RF PACVD(radio frequency plasma-assisted chemical vapor deposition). In order to increase the nucleation density, the WC-Co substrate was polished with 3$\mu\textrm{m}$ diamond paste. And the WC-Co substrate was pretreated in HNO$_3$: H$_2$O = 1:1 and O$_2$ plasma. In H$_2$-CH$_4$gas mixture, the crystallinity of thin film increased with decreasing CH$_4$concentration at 800W discharge power and 20torr reaction pressure. In H$_2$-CH$_4$-O$_2$gas mixture, the crystallinity of thin film increased with increasing O$_2$concentration at 800W discharge power, 20torr reaction pressure and 4% CH$_4$concentration.

  • PDF