• Title/Summary/Keyword: Co ferrite

Search Result 365, Processing Time 0.024 seconds

Changes in Magnetic Properties When Manufacturing Cobalt-substituted Barium Ferrite Powder (Cobalt가 치환된 Barium Ferrite 분말 제조 시 자기적 특성변화)

  • Um, Myeong-Heon;Yeon, Je-Uk;Lee, Cha-Jin;Ha, Beom-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.30-39
    • /
    • 2020
  • Single-phase barium ferrite powder was synthesized using the sol-gel method. At this time, an attempt was made to find the optimal experimental conditions for the production of single-phase barium ferrite by varying the Fe to Ba molar ratio (Fe/Ba) and the heat treatment temperature. In addition, cobalt-substituted barium ferrite particles were prepared using cobalt, which has an excellent effect on coercivity control for the production of ferrite fine particles having a coercivity of 2.5 to 5.5 kOe for use in high-density magnetic recording media. The changes in the magnetic properties of these were investigated. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), and field emission scanning electron microscopy (FE-SEM) were used to observe the synthesis of single-phase, and Fourier transform infrared spectroscopy (FT-IR) and energy dispersive X-ray spectrometry (EDS) were used to analyze the chemical structure and composition. The coercivity of the cobalt-substituted barium ferrite powder was measured by vibrating sample magnetometry (VSM). As a result, single-phase Barium ferrites were synthesized when the Fe/Ba molar ratio was 10, and the heat treatment temperature was 900 ℃. The coercivity decreased with increasing the amount of Co added. Barium ferrite, having a coercivity of 2.5 to 5.5 kOe for use in high-density magnetic recording media, was synthesized when the Co to Fe(Co/Fe) molar ratio was less than 0.16.

Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn) (M-ferrite를 이용한 열화학적 수소제조 (M=Co,Ni,Mn))

  • Cho Mi-Sun;Kim Woo-Jin;Woo Sung-Woong;Park Chu-Sik;Kang Kyoung-Soo;Choi Sang-Il
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.69-74
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrite를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites 는 고상법으로 제조하였다. 각각의 M-ferrite에 대한 열적환원은 1573K 에서 진행하였고 물 분해 반응은 1273K 에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

Effects of $Ti^{+4}$ Addition to Ni-Cu-Co Ferrite on Microstructure, Magnetocrystalline Anisotropy and Magnetostriction ($Ti^{+4}$의 첨가가 Ni-Cu-Co Ferrite의 미세구조, 자기이방성, 자왜특성에 미치는 영향)

  • 정용무;주웅길
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.4
    • /
    • pp.225-236
    • /
    • 1979
  • The effect of $Ti^{+4}$ addition on the sinterability, microstructure, and temperature dependence of electromechanical coupling factor of magnetostrictive Ni-Cu-Co ferrite was investigated. The density of Ni-Cu-Co ferrite slightly increased by 2.0 mole % addition of either $TiO_2$ or $Fe_2TiO_4$, but tended to decrease by more than 2.0 mole % addition of $TiO_2$ or $Fe_2TiO_4$. As the content of either $TiO_2$ or $Fe_2TiO_4$ increased, the magnetocrystalline anisotropy compensation temperature also increased. Microstructure studies showed the stable grains when Ni-Cu-Co ferrite was sintered above 1, 20$0^{\circ}C$.

  • PDF

The effect of powder characteristics on the behavior of Co-firing of ferrite and varistor (Ferrite/varistor의 동시소성 거동에 대한 분체특성의 영향)

  • Han, Ik-Hyun;Lee, Yong-Hyun;Myoung, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Choi, Duck-Kyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2007
  • A number of process problems should be solved in the multi-layered ceramic devices such as EMI filter. In particular, it is essential to control the sintering shrinkage in co-firing of different materials for obtaining defect-free samples such as crack, camber, and delamination which usually occur near the surface and interface. We studied the effect of the powder properties of ferrite on the co-firing behavior of green ceramic layers composed of ferrite and varistor. Three kind of ferrite powder samples as a function of milling time (24, 48, and 72 hr) were prepared. Varistor and ferrite ceramic green sheet were made by means of doctor blade process using slurry (ceramic powder and binder solution). Here, slurry was prepared by mixing 55 wt% powder with 45wt% binder solution. Varistor and ferrite green sheets were laminated at $80 kg/cm^2$, and co-fired at $900^{\circ}C$ and $1000^{\circ}C$ for 3 hr. We obtained the camber-free and co-fired ferrite/varistor layer structure by controlling the milling time and sintering temperature.

Microwave Properties of Co2 Ferrite for Miniaturization of Antenna (안테나 소형화를 위한 Co2 페라이트의 마이크로파 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Kim, Kang;Lee, Young-Hie;Song, Sung-Ho;Ahn, Jong-Bok;Kim, Byung-Hwan;Choi, Ji-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2270-2275
    • /
    • 2011
  • The sintering behavior and microwave properties of ferrite ($Ba_3Co_{2-2x}Zn_{2x}Fe_{24}O_{41}$ ceramics) were investigated for microwave applications. Also PIFA type antenna with ferrite was simulated. All samples were prepared by the solid state reaction method and sintered at $1350^{\circ}C$. All ceramics had relatively density above of 92% compare with theoretical density of $Ba_3Co_2Fe_{24}O_{41}$ ceramics. From the XRD pattens, the Z-type phase was existed as main phase in $Ba_3Co_{2-2x}Zn_{2x}Fe_{24}O_{41}$ ceramics. The permittivity and permeability of $Ba_3Co_{2-2x}Zn_{2x}Fe_{24}O_{41}$ ceramics were increased with Zn additions and decreased rapidly over frequency of 200~600 MHz. Several PIFA type antennas with ferrite and FR4 were simulated. All antenna structure had return loss of less than -10 dB at each resonant frequency. Simulated antenna using both ferrite and FR4 showed size reduction of 25% without a significant decrement of efficiency.

Impedance Matching of Electrically Small Antenna with Ni-Zn Ferrite Film

  • Lee, Jaejin;Hong, Yang-Ki;Lee, Woncheol;Park, Jihoon
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.428-431
    • /
    • 2013
  • We demonstrate that a partial loading of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (Ni-Zn ferrite) film remarkably improves impedance matching of electrically small $Ba_3Co_2Fe_{24}O_{41}$ ($Co_2Z$) hexaferrite antenna. A 3 ${\mu}m$ thick Ni-Zn ferrite film was deposited on a silicon wafer by the electrophoresis deposition process and post-annealed at $400^{\circ}C$. The fabricated Ni-Zn ferrite film has saturation magnetization of $268emu/cm^3$ and coercivity of 89 Oe. A partial loading of the Ni-Zn ferrite film on the $Co_2Z$ hexaferrite helical antenna increases antenna return loss to 24.7 dB from 9.0 dB of the $Co_2Z$ antenna. Experimental results show that impedance matching and maximum input power transmission to the antenna without additional matching elements can be realized, while keeping almost the same size as the $Co_2Z$ antenna size.

Crystallization of Ferrite Powder Using Ultrasonic Wave (초음파를 이용한 페라이트 분말의 결정화)

  • 신현창;오재희;이재춘;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.181-185
    • /
    • 2000
  • A new technique capable of accelerating the crystallization of ferrite powder at low temperature is developed. Effects of the ultrasonic waves on the crystallization were studied for ferrite powders prepared using the co-precipitation method. The crystallization of the ferrite powders exposed to the ultrasonic waves were characterized by the XRD. The amorphous ferrite powders prepared using the co-precipitation method were crystallized as a result of the exposure to the ultrasonic waves for 5h and the crystallization of the ferrite powders became more enhanced in proportion to the time exposed. The ferrite powder exposed to the ultrasonic waves for 25h had higher crystallinity a larger specific surface area than the ferrite powder calcined at 500$^{\circ}C$ for 2h.

  • PDF

Evaluation of Spin Direction in Ferrite-Plated Films by $Fe^{57}$ Conversion Electron Mossbauer Spectroscopy

  • Shirasaki, Fumio;Kitamoto, Yoshitaka;Kantake, Shusuke;Abe, Masanori
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.405-407
    • /
    • 2000
  • Polycrystalline films of Ni- and Co-ferrites films are prepared from aqueous solution at $90^{\circ}C$ by ferrite plating, which are subjected to Fe$^57$ conversion electron Mossbauer spectroscopy in backscatter mode. The average angle of Fe spins relative to the film plane is evaluated as 18 degree and 82 degree for the Ni- and Co-ferrite films, respectively, indicating a prominent magnetic anisotropy parallel and perpendicular to the film plane. It was also verified by the magnetization measurements.

  • PDF

Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles

  • Purnama, Budi;Rahmawati, Rafika;Wijayanta, Agung Tri;Suharyana, Suharyana
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.207-210
    • /
    • 2015
  • Modifications in the structural and magnetic properties of co-precipitated cobalt ferrite nanoparticles can be accomplished by varying the annealing time periods during the synthetic process. Experimental results show that high-purity cobalt ferrite nanoparticles are obtained using a co-precipitation process. The dependence of the crystallite sizes on the annealing time was successfully demonstrated using XRD and SEM. Finally, vibrating sample magnetometer analyses show that the magnetic properties of the cobalt ferrite nanoparticles depend on their relative particle sizes.

Effects of pH Control Agent and Co-Precipitate Washing Agent on Nickel Ferrite Preparation by Co-Precipitation Method (공침법에 의한 Nickel Ferrite의 분말제조에서 pH-조절제 및 공침물-세척제의 영향)

  • Jeong, Hong-Ho;Seong, Gi-Ung
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.445-449
    • /
    • 2000
  • Nickel ferrite $(Ni_{0.75}Fe_{2.25}O_4$ was synthesized by co-precipitation method in order to investigate its behavior under conditions of the reactor coolant system in pressurized light water nuclear power plants. Ammonia or potassium carbonate was used as a solution pH control agent, and aqueous ammonia or potassium carbonate solution or secondary distilled water was used as a co-precipitate washing agent. The effects of the pH control agent and the co-precipitate washing agent on the production yield on the basis of the Ni/Fe molar ratio and the particle characteristics of final products were investigated by XRD, SEM, EDX and XPS. The production yield was almost congruent with that of the initial aqueous mixture in case of using potassium carbonate as a pH control agent, while in case of using ammonia, it was quite changed. The difference seemed to be due to the effects of $Ni^{2+}{\leftarrow}NH_3$complexation in the aqueous solution and of the pH of co-precipitate washing agent.

  • PDF