• Title/Summary/Keyword: Co alloy

Search Result 1,335, Processing Time 0.029 seconds

$CO_2$ Laser Weldability Between Sintered Co, Co+Ni alloy and Carbon Steel (Co/Co+Ni 성분의 분말 소결 금속과 탄소강의 레이저 용접성에 대한 고찰)

  • 박종원;이창희
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.13-24
    • /
    • 2000
  • The weldability of dissimilar materials between sintered materials which are consisted of Co, Co+Ni and carbon steel has been investigated using CO$_2$ laser. Autogeneous CO$_2$ laser welding were run along the butt between two alloys using sets of parameters variation-power and travel speed. In order to study weldability, mechanical tests (bending strength test, microhardness test) and metallurgical analyses (microstructure, phase transformation, fracture mode) were carried out. From the results obtained, it was found that the porosity which exists in a weld metal greatly affects the soundness of the weld. The optimum energy input to have a proper strength over than the requirement by a specification, found to be around 0.3-0.35kJ/m. There are two kinds of fracture mode in the weld metal, depending upon alloy combination, brittle fracture in the case of Co-carbon steel and a ductile fracture in the case of Co+Ni-carbon steel. In general, Co+Ni sintered material showed a better weld properties as compared to the Co sintered material.

  • PDF

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF

Characteristics of the Unidirectionally Solidified Al-Co Alloy (일방향응고시킨 Al-Co 합금의 특성에 관한 연구)

  • Park, Su-Jung;Jun, Hyun-Yong;Lee, Hyun-Kyu
    • Journal of Korea Foundry Society
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • The structures and mechanical property of the unidirectionally solidified Al-Co eutectic alloy were investigated. Al-Co eutectic alloy was unidirectionally solidified with growth rates(R) between I cm/hr and 10 cm/hr in the induction furnace maintaining the thermal gradient (G) at solid-liquid interface, $32^{\circ}C$/cm. The eutectic microstructure was varied with the growth condition(G/R ratio). When the G/R ratio was larger than $8.5{\times}10^{3}^{\circ}C/cm^{2}/sec$, a lamellar structure was formed, But the G/R ratio was smaller than $8.5{\times}10^{3}^{\circ}C/cm^{2}/sec$, a colony structure was formed. It was found that the interlamellar spacing(${\lambda}$) was dependent on the growth rate(R) with the relationship, ${\lambda}^{2}{\cdot}R=constant$. The microhardness of this eutectic alloy increased with increase in the growth rate.

Effect of Contact Pressure on the Variations in Coefficients of Friction Between Porcine Knee Joint Cartilage and Co-Cr Alloy in a Repeat Pass Sliding Motion (반복 회전운동에서 코발트 크롬 합금과 미끄럼 접촉하는 돼지 무릎 관절연골의 접촉압력이 마찰계수 변화에 미치는 영향)

  • Lee, Kwon-Yong;Kim, Hwan;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.231-235
    • /
    • 2009
  • In this study, the influence of contact pressure on the variation in coefficients of friction between porcine knee joint cartilage and Co-Cr alloy in a repeat pass sliding motion was investigated. Flat-ended cartilage pin specimens(9 mm diameter, 8 mm long) were prepared from porcine(6 months old) knee joints by a drill-type punch. Friction tests were conducted by using a pin-on-disk type friction tester for an hour in PBS lubricated condition under the contact pressures of 0.5, 1 and 2 MPa with 50 mm distance per a cycle at ambient condition. As a result, coefficients of friction increased as the test duration increased for all contact pressures. The maximum coefficients of friction were 0.082, 0.06 and 0.098 for 0.5, 1, and 2 MPa, respectively. It showed that coefficients of friction of porcine knee joint cartilage against Co-Cr alloy depended on the level of contact pressure and related to squeeze film lubrication mechanism.

Electrochemical Properties of SnCo for Anode Material of Li Ion Batteries (리튬 이온 전지 음극 재료용 SnCo의 전기화학적 특성)

  • Kim, Ki-Tae;Kim, Yong-Mook;Lee, Yong-Ju;Lee, Ki-Young;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2002
  • SnCo alloy powder prepared by high energy ball milling is examined as an anode material for lithium-ion batteries. As the ball-milling time increased, the crystallinity of SnCo decreased. XRD and TEM SADP showed that nanocrystalline and amorphous phase coexisted after 16 h ball-milling. As the crystallinity decreased, the cycleability increased. At first cycle, there are 4 plateau potentials. The observation of voltage plateau at about 0.68 V confirms the formation of Sn-Li alloy and Co metal. It is considered that The plateau potentials below 0.68 V were reaction between Li and Sn. The change of chemical diffusion coefficient showed that the structure of SnCo alloy abruptly changed at first cycle, and maintained after 2nd cycle.

The Study on Formation of Pt-Co Alloy Thin Films for RTD Temperature Sensors (측온저항체 온도센서용 Pt-Co 합금박막의 형성에 관한 연구)

  • Kim, Seo-Yeoun;Noh, Sang-Soo;Choi, Young-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1485-1487
    • /
    • 1997
  • Platinum-Cobalt alloy thin films were deposited on $Al_2O_3$ substrates by co sputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on $Al_2O_3$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under sputtering conditions (; the input power, working vacuum), annealing conditions (; temperature, time) and also after annealing these films. After the annealing treatment at $800^{\circ}C$ for 60min, the resistivity and sheet resistivity of Pt-Co thin films was $0.0302{\mu}{\Omega}{\cdot}cm$ and $0.1{\Omega}/{\square}$, respectively, and the TCR value of Pt-Co RTD was $3600ppm/^{\circ}C$ in the temperature range of $25{\sim}400^{\circ}C$. These results indicate that Pt-Co thin films have potential for the excellent RTD temperature sensors.

  • PDF

CO Adsorption and Reaction on Clean and Zn-deposited Au(211) surface

  • Jo, Sang-Wan;Mbuga, F.;Ogasawara, H.;Nilsson, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.128.2-128.2
    • /
    • 2013
  • Crucially, effective catalysts must be capable of efficiently catalyzing the protonation of adsorbed CO to adsorbed CHO or COH. One of the strategies is alloying with metals with higher oxygen affinity and Au-Zn alloy is one of the best candidates. At first, we made Au-Zn alloy using vacuum evaporating method. Zn was deposited on the Au(211) surface and the amount was estimated by X-ray photoelectron spectroscopy (XPS) using the relative sensitivity of Au 4f and Zn 3d. We investigated CO adsorption on a clean Au(211) and Au-Zn alloy using temperature-programmed desorption (TPD) and XPS. From the TPD results, we can conclude that the presence of the particular step sites at the Au(211) surface imparts stronger CO bonding and Zn atoms are sitting on the step sites at the Au(211) when Zn is deposited. The XPS results show the oxygen atoms of CO bond Zn atoms on Au-Zn surface. It should be an evidence that alloying Zn atoms that has high oxygen affinity into an electrocatalyst may allow CHO* to bind to the surface through both the carbon and oxygen atoms.

  • PDF

Effect of Stress on the Damping Capacity of Damaged Damping Alloy under Fatigue Stress (피로손상된 제진합금의 감쇠능에 미치는 피로 응력의 영향)

  • Lee, Myeong-Soo;Lee, Ye-Na;Nam, Ki-Woo;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.583-589
    • /
    • 2018
  • This study investigates the effect of fatigue stress on the damping capacity in a damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress. ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms by fatigue stress in the damaged Fe-22Mn-12Cr-3Ni-2Si4-Co damping alloy under fatigue stress. The ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms with the specific direction and surface relief, or they cross each other. With an increasing fatigue stress, the volume fraction of ${\alpha}^{\prime}-martensite$ and ${\varepsilon}-martensite$ increases. With an increasing fatigue stress, the damping capacity increases with an increase in the volume fraction of ${\varepsilon}-martensite$. The increase in the damping capacity in the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co alloy under fatigue stress strongly affects the increase of ${\varepsilon}-martensite$ formed by fatigue stress, but the damping capacity of the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress is strongly controlled by a large amount of ${\alpha}^{\prime}-martensite$.

Study on the Brazing Characteristics of LTCC/Kovar (LTCC/Kovar 간의 Brazing 특성 연구)

  • Lee, W.S.;Cho, H.M.;Lim, W.;Yoo, C.S.;Lee, Y.S.;Kang, N.K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.57-57
    • /
    • 2000
  • Brazing characteristics of the LTCC(Low Temperature Co-fired Ceramics)/ Kovar(Fe-Ni-Co alloy) was investigated. Kovar is one of the typical material for the lid of MCM and packages. In case of alumina package, Brazing process is done by higher temperature profile than 800 $^{\circ}C$ and Ag-Cu alloy. But, LTCC has sintering temperature near 850 $^{\circ}C$. So, it is difficult to use the same process as alumina brazing. The adhesion strength of the brazed part is affected by brazing alloy and metallization properties between conductor pattern and LTCC material. We investigated brazing characteristics of the LTCC/Kovar using various brazing alloys(Ag-Cu, Au-Sn) and process conditions. And, we examined the influence of the glass contents in conductor on the brazing characteristics of the LTCC/Kovar.

  • PDF

Phase sequence in Codeposition and Solid State Reaction of Co-Si System and Low Temperature Epitaxial Growth of $CoSi_2$ Layer (Co-Si계의 동시증착과 고상반응시 상전이 및 $CoSi_2$ 층의 저온정합성장)

  • 박상욱;심재엽;지응준;최정동;곽준섭;백홍구
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.439-454
    • /
    • 1993
  • The phase sequence of codeposited Co-Si alloy and Co/si multilayer thin film was investigated by differential scanning calormetry(DSC) and X-ray diffraction (XRD) analysis, The phase sequence in codeposition and codeposited amorphous Co-Si alloy thin film were CoSilongrightarrow Co2Si and those in Co/Si multilayer thin film were CoSilongrightarrowCo2Silongrightarrow and CoSilongrightarrowCo2Si longrightarrowCoSilongrightarrowCoSi2 with the atomic concentration ration of Co to Si layer being 2:1 and 1:2 respectively. The observed phase sequence was analyzed by the effectvie heat of formatin . The phase determining factor (PDF) considering structural facotr in addition to the effectvie heat of formation was used to explain the difference in the first crystalline phase between codeposition, codeposited amorphous Co-Si alloy thin film and Co/Si multilayer thin film. The crystallinity of Co-silicide deposited by multitarget bias cosputter deposition (MBCD) wasinvestigated as a funcion of deposition temperature and substrate bias voltage by transmission electron microscopy (TEM) and epitaxial CoSi2 layer was grown at $200^{\circ}C$ . Parameters, Ear, $\alpha$(As), were calculate dto quantitatively explain the low temperature epitaxial grpwth of CoSi2 layer. The phase sequence and crystallinity had a stronger dependence on the substrate bias voltage than on the deposition temperature due to the collisional daxcade mixing, in-situ cleannin g, and increase in the number of nucleation sites by ion bombardment of growing surface.

  • PDF