DOI QR코드

DOI QR Code

Effect of Stress on the Damping Capacity of Damaged Damping Alloy under Fatigue Stress

피로손상된 제진합금의 감쇠능에 미치는 피로 응력의 영향

  • Lee, Myeong-Soo (Dept. of Metallurgical Engineering, Pukyong National University) ;
  • Lee, Ye-Na (Dept. of Materials Science and Engineering, Pukyong National University) ;
  • Nam, Ki-Woo (Dept. of Materials Science and Engineering, Pukyong National University) ;
  • Kang, Chang-Yong (Dept. of Metallurgical Engineering, Pukyong National University)
  • 이명수 (부경대학교 금속공학과) ;
  • 이예나 (부경대학교 재료공학과) ;
  • 남기우 (부경대학교 재료공학과) ;
  • 강창룡 (부경대학교 금속공학과)
  • Received : 2018.08.06
  • Accepted : 2018.09.15
  • Published : 2018.10.27

Abstract

This study investigates the effect of fatigue stress on the damping capacity in a damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress. ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms by fatigue stress in the damaged Fe-22Mn-12Cr-3Ni-2Si4-Co damping alloy under fatigue stress. The ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms with the specific direction and surface relief, or they cross each other. With an increasing fatigue stress, the volume fraction of ${\alpha}^{\prime}-martensite$ and ${\varepsilon}-martensite$ increases. With an increasing fatigue stress, the damping capacity increases with an increase in the volume fraction of ${\varepsilon}-martensite$. The increase in the damping capacity in the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co alloy under fatigue stress strongly affects the increase of ${\varepsilon}-martensite$ formed by fatigue stress, but the damping capacity of the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress is strongly controlled by a large amount of ${\alpha}^{\prime}-martensite$.

Keywords

References

  1. U. Watanabe, Tetsu-to-Hagane, 77, 306 (1991). https://doi.org/10.2355/tetsutohagane1955.77.2_306
  2. K. K. Lee, W. Y. Jang, S. H. Baik, M. C. Shin and C. S. Choi, Scr. Mater., 37, 943 (1997). https://doi.org/10.1016/S1359-6462(97)00198-X
  3. T. Murakami, T. Inoue, H. Shimaru and M. Nakano, Mater. Sci. Eng., A, 432, 2, 113 (2006). https://doi.org/10.1016/j.msea.2006.06.090
  4. J. Y. Lee, J. N. Kim, C, Y. Kang, Kor. J. Met. Mater., 62, 12, 919 (2015).
  5. Y. Tomota and Y. Morioka, Kinzoku, 67, 5(1997).
  6. Y. K. Lee, J. H. Jun and C. S. Choi, ISIJ Inter., 37, 1023 (1997). https://doi.org/10.2355/isijinternational.37.1023
  7. H. Sshsshi, I. S. Kim, C. Y. Kang, N. Igata, K. Miyahara, Kinzoku, 74, 3, 1 (2004).
  8. H. V. Panossian, ASME., 114, 101(1992).
  9. D. Birchon, D. E. Bromly, D. Healey, Met. Sci. J., 2, 41 (1968).
  10. H. Okada, H. Sahashi, I, S. Kim, C. Y. Kang, N. Igata, K. Miyahara, Mater. Sci. Eng., A, 370, 519 (2004). https://doi.org/10.1016/j.msea.2003.08.097
  11. R. L. Miller, Trans. ASM, 57, 892 (1964).
  12. A. J. Boger and W. G. Rurgers, Acta Metall., 12, 255 (1964). https://doi.org/10.1016/0001-6160(64)90194-4
  13. J. A. Venables, Philos. Mag., 7, 35 (1961).
  14. V. F. Zackzy, Z. R. Paker. D. Fahr and R. Bush, Trans. ASM, 60, 252 (1967).
  15. D. U. Son, J. H. Kim, I. S. Kim, K. Miyahara, J. H. Sung and C. Y. Kang, Korean J. Met. Mater., 42, 8, 621 (2004).
  16. I. Tamura, Met. Sci., 16, 245 (1982). https://doi.org/10.1179/030634582790427316