• Title/Summary/Keyword: Co 박막

Search Result 1,457, Processing Time 0.032 seconds

Low-temperature Growth of Cu(In,Ga)Se2 Thin Film and NaF Post Deposition Treatment for Cu(In,Ga)Se2 Solar Cells (Cu(In,Ga)Se2 박막의 저온 성장 및 NaF 후속처리를 통한 태양전지 셀 특성 연구)

  • Kim, Seung Tae;Jung, Gwang Seon;Yun, Jae Ho;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • High efficiency $Cu(In,Ga)Se_2$ solar cells are generally prepared above $500^{\circ}C$. Lowering the process temperature can allow wider selection of substrate material and process window. In this paper, the three-stage co-evaporation process widely used to grow CIGS thin film at high temperature was modified to reduce the maximum substrate temperature. Below $400^{\circ}C$ the CIGS films show poor crystal growth and lower solar cell performance, in spite of external Na doping by NaF. As a new approach, Cu source instead of Cu with Se in the second stage was applied on the $(In,Ga)_2Se_3$ precursor at $400^{\circ}C$ and achieved a better crystal growth. The distribution of Ga in the films produce by new method were investigated and solar cells were fabricated using these films.

A Study on Selenization of Cu-In-Ga Precursors by Cracked Selenium (Cracked Selenium을 이용한 CIGS 박막 셀렌화 공정에 관한 연구)

  • Kim, Minyoung;Kim, Girim;Kim, Jongwan;Son, Kyeongtae;Lee, Jongkwan;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.503-509
    • /
    • 2013
  • In this study, $Cu(In_{1-x},Ga_x)Se_2$ (CIGS) thin films were prepared on the Mo coated soda-lime glass by the DC magnetron sputtering and a subsequent selenization process. For the selenization process, selenization rapid thermal process(RTP) with cracker cell, which was helpful to smaller an atomic of Se, was adopted. To make CIGS layer, they were then annealed with the cracked Se. Based on this selenization method, we made several CIGS thin film and investigated the effects of In deposition time, and selenization time. Through x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM), it is found that the Mo/In/CuGa structure and the high sputtering power shows the dominant chalcopyrite structure and have a uniform distribution of the grain size. The CIGS films with the In deposition time of 5 min has the best structure due to the smooth surface. And CIGS films with the selenization time of 50 min show good crystalline growth without any voids.

Electrocaloric Effect in Heterolayered K(Ta,Nb)O3/Pb(Zr,Ti)O3 Thin Films Fabricated by Spin-Coating Method (스핀-코팅법으로 제작한 K(Ta,Nb)O3/Pb(Zr,Ti)O3 이종층 박막의 전기 열량 효과)

  • Yang, Young-Min;Yuk, Ji-Soo;Kim, Ji-Won;Yi, Sam-Haeng;Park, Joo-Seok;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Heterolayered K(Ta,Nb)O3/Pb(Zr,Ti)O3 thin films on Pt/Ti/SiO2/Si substrates were prepared by a sol-gel process and spin-coating method. The structural and electrical properties were measured to investigate the possibility of application as an electrocaloric effect device. All specimens exhibited dense and uniform cross-sectional structures without pores, and the average thickness of the specimen coated six times was approximately 394 nm. Curie temperatures were observed at 5℃ or less in type-I and 10℃ in type-II specimens, respectively. Type-II specimens coated 6 times showed a relative dielectric constant of 758 and remanent polarization of 9.71 μC/㎠ at room temperature. The maximum electrocaloric effect occurred between 20 and 25℃, slightly higher than their Curie temperature, and the electrocaloric property (ΔT) of the type-II specimens coated 6 times was approximately 1.2℃ at room temperature.

Improvement of Permeation of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET) (고분자 기판위에 유기 용매를 사용하지 않은 다층 박막 Encapsulation 기술 개발)

  • Kang, Hee-Jin;Han, Jin-Woo;Kim, Jong-Yeon;Moon, Hyun-Chan;Choi, Sung-Ho;Park, Kwang-Bum;Kim, Tae-Ha;Kim, Hwi-Woon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.56-57
    • /
    • 2006
  • In this paper, the inorganic multi-layer thin film encapsulation was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON SiO2 and parylene layer showed the most suitable properties. Under these conditions, the WVTR for PET can be reduced from a level of $0.57\;g/m^2/day$ (bare subtrate) to 1*10-5 g/$m^2$/day after application of a SiON and SiO2 layer. These results indicates that the PET/SiO2/SiON/Parylene barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

A Research About P-type Polycrystalline Silicon Thin Film Transistors of Low Temperature with Metal Gate Electrode and High Temperature with Gate Poly Silicon (실리콘 게이트전극을 갖는 고온소자와 금속 게이트전극을 갖는 P형 저온 다결정 실리콘 박막 트랜지스터의 전기특성 비교 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.433-439
    • /
    • 2011
  • Poly Si TFTs (poly silicon thin film transistors) with p channel those are annealed HT (high temperature) with gate poly crystalline silicon and LT (low temperature) with metal gate electrode were fabricated on quartz substrate using the analyzed data and compared according to the activated grade silicon thin films and the size of device channel. The electrical characteristics of HT poly-Si TFTs increased those are the on current, electron mobility and decrease threshold voltage by the quality of particles of active thin films annealed at high temperature. But the on/off current ratio reduced by increase of the off current depend on the hot carrier applied to high gate voltage. Even though the size of the particles annealed at low temperature are bigger than HT poly-Si TFTs due to defect in the activated grade poly crystal silicon and the grain boundary, the characteristics of LT poly-Si TFTs were investigated deterioration phenomena those are decrease the electric off current, electron mobility and increase threshold voltage. The results of transconductance show that slope depend on the quality of particles and the amplitude depend on the size of the active silicon particles.

Spin Spray-Deposited Spinel Thin Films for Microbolometer Applications (마이크로볼로미터 응용을 위한 스핀 스프레이로 증착된 스피넬 박막)

  • Jeon, Chang Jun;Lee, Kui Woong;Le, Duc Thang;Jeong, Young Hun;Yun, Ji Sun;Paik, Jong Hoo;Cho, Jeong Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.809-814
    • /
    • 2014
  • Spinel thin films were prepared by the spin spray technique to develop new thermal imaging materials annealed at low temperature for uncooled microbolometer applications. The spinel thin films were deposited from $[(Ni_{0.30}Co_{0.33}Mn_{0.37})_{1-x}Cu_x]_3O_4$ ($0.1{\leq}x{\leq}0.2$) solutions and then annealed at $400^{\circ}C$ for 1 h in argon. Effects of Cu content (x) and deposition time on the electrical properties of the annealed films were investigated. With increasing deposition time, the resistivity of the annealed films increased. For the annealed films deposited for 1 min, the resistivity of x=0.15 films was lower than that of x=0.1 films due to the different grain sizes. The high temperature coefficient of resistance (TCR) of the annealed films could be obtained at temperature below $50^{\circ}C$. Typically, the resistivity of $127{\Omega}{\cdot}cm$ and TCR of -5.69%/K at $30^{\circ}C$ were obtained for x=0.1 films with deposition time of 1 min annealed at $400^{\circ}C$ for 1 h in argon.

The Influence of Additives on the Mechanical Properties of Electrodeposited Copper Foils (첨가제에 의한 구리 박막의 기계적 특성 변화)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Son, Kyu-Song;Song, Ram;Lee, Man-Hyung;Hwang, Young-Kyu;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • The objective of this study is to investigate the effect of additives on the mechanical and electrical characteristics of electrodeposited copper foils. Additives A(leveler) and B(brightener) were used in this study and Cl ions were used as an accelerator. In case of using these additives A and B, it showed a disadvantage that decreased the elongation of electrodeposited layer due to decreased grain sizes and increased tensile strength. On the other hand, the Cl ions decreased the specific resistance of the copper layer and increased elongation owing to increasing grain sizes. The highest elongation and lowest resistivity were measured in the group added only Cl ions, whose values were 21.9% and $3.11{\mu}\Omega$-cm, respectively.

Dielectric Characteristics due to the nano-pores of SiOCH Thin Flm (기공형성에 의한 SiOCH 박막의 유전 특성)

  • Kim, Jong-Wook;Park, In-Chul;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.19-23
    • /
    • 2009
  • We have studied dielectric characteristics of low-k interlayer dielectric materials was fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was introduced with the flow rates from 24 sccm to 32 sccm by 2 sccm step in the constant flow rate of 60 sccm $O_2$. Then, SiOCH thin film deposited at room temperature was annealed at temperature of $400^{\circ}C$ and $500^{\circ}C$ for 30 minutes in vacuum. The vibrational groups of SiOCH thin films were analyzed by FT/IR absorption lines, and the dielectric constant of the low-k SiOCH thin films were obtained by measuring C-V characteristic curves. With the result that FTIR analysis, as BTMSM flow rate increase, relative carbon content of SiOCH thin film increased from 29.5% to 32.2%, and increased by 32.8% in 26 sccm specimen after $500^{\circ}C$ annealing. Dielectric constant was lowest by 2.32 in 26 sccm specimen, and decreased more by 2.05 after $500^{\circ}C$ annealing. Also, leakage current is lowest by $8.7{\times}10^{-9}A/cm^2$ in this specimen. In the result, shift phenomenon of chemical bond appeared in SiOCH thin film that BTMSM flow rate is deposited by 26 sccms, and relative carbon content was highest in this specimen and dielectric constant also was lowest value

  • PDF

Effect of Annealing Temperature on the Properties of NaNbO3:Eu3+ Phosphor Thin Films Deposited on Quartz Substrates (석영 기판 위에 증착된 NaNbO3:Eu3+ 형광체 박막의 특성에 열처리 온도가 미치는 영향)

  • Cho, Shinho
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.2
    • /
    • pp.96-101
    • /
    • 2021
  • NaNbO3:Eu3+ phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering at a growth temperature of 100 ℃, with subsequent annealing at temperatures of 800, 900, and 1000 ℃. The effects of annealing temperature on the structural, morphological, and optical properties of the thin films were investigated. The NaNbO3:Eu3+ sputtering target was synthesized by a solid-state reaction of raw materials Na2CO3, Nb2O5, and Eu2O3. The X-ray diffraction patterns exhibited that the thin films had two mixed phases of NaNbO3 and Eu2O3. Surface morphologies were investigated by using field emission-scanning electron microscopy and indicated that the grains of the thin film annealed at 1000 ℃ showed irregular shapes with an average size of approximately 300 nm. The excitation spectra of Eu3+-doped NaNbO3 thin film consisted of a strong charge transfer band centered at 304 nm in the range of 240-350 nm and two weak peaks at 395 and 462 nm, respectively, resulting from the 7F05L6 and 7F05H2 transitions of Eu3+ ions. The emission spectra under excitation at 304 nm exhibited an intense red band centered at 614 nm and two weak bands at 592 and 681 nm. As the annealing temperature increased from 800 ℃ to 1000 ℃, the intensities of all the emission bands and the band gap energies gradually increased. These results indicate that the higher annealing temperature enhance the luminescent properties of NaNbO3:Eu3+ thin films.

Effect of Deposition Temperature on the Optical Properties of La2MoO6:Dy3+,Eu3+ Phosphor Thin Films (증착 온도에 따른 La2MoO6:Dy3+,Eu3+ 형광체 박막의 광학 특성)

  • Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.387-392
    • /
    • 2019
  • $Dy^{3+}$ and $Eu^{3+}$-co-doped $La_2MoO_6$ phosphor thin films were deposited on sapphire substrates by radio-frequency magnetron sputtering at various growth temperatures. The phosphor thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy, ultraviolet-visible spectroscopy, and fluorescence spectrometry. The optical transmittance, absorbance, bandgap, and photoluminescence intensity of the $La_2MoO_6$ phosphor thin films were found to depend on the growth temperature. The XRD patterns demonstrated that all the phosphor thin films, irrespective of growth temperatures, had a tetragonal structure. The phosphor thin film deposited at a growth temperature of $100^{\circ}C$ indicated an average transmittance of 85.3% in the 400~1,100 nm wavelength range and a bandgap energy of 4.31 eV. As the growth temperature increased, the bandgap energy gradually decreased. The emission spectra under ultraviolet excitation at 268 nm exhibited an intense red emission line at 616 nm and a weak emission line at 699 nm due to the $^5D_0{\rightarrow}^7F_2$ and $^5D_0{\rightarrow}^7F_4$ transitions of the $Eu^{3+}$ ions, respectively, and also featured a yellow emission band at 573 nm, resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of the $Dy^{3+}$ ions. The results suggest that $La_2MoO_6$ phosphor thin films can be used as light-emitting layers for inorganic thin film electroluminescent devices.