• Title/Summary/Keyword: Co/$CeO_2$

Search Result 253, Processing Time 0.024 seconds

Study on CeO2 Single Buffer on RABiTS for SmBCO coated Conductor (SmBCO 초전도 층착을 위한 RABiTS상의 CeO2 단일 버퍼 연구)

  • Kim, Tae-Hyung;Kim, Ho-Sup;Lee, Nam-Jin;Ha, Hong-Soo;Ko, Rock-Kil;Ha, Dong-Woo;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Kyung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.546-549
    • /
    • 2007
  • As a rule, high temperature superconducting coated conductors have multi-layered buffers consisting of seed, diffusion barrier and cap layers. Multi-buffer layer deposition requires longer fabrication time. This is one of main reasons which increases fabrication cost. Thus, single buffer layer deposition seems to be important for practical coated conductor process. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique. 100 nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $1\;{\mu}m-thick$ SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-5%W substrate. Critical current of 90 A/cm was obtained for the SmBCO coated conductors.

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화)

  • Jung, Kyeong Youl;Park, Jea Hoon;Song, Shin Ae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.

Growth of Mn,Ce:$LiTaO_3$ and two-color holographic recording (Mn,Ce:$LiTaO_3$의 성장과 이색을 이용한 홀로그램 저장특성)

  • ;Van-Thai Pham
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.96-97
    • /
    • 2002
  • 불순물을 이용한 비휘발성 홀로그램저장[1,2]은 기존의 열정착을 광정착으로 대치하는 방법으로서 여러 가지 희토류 혹은 전이금속이온을 첨가한 LiMbO$_3$ (LNO) 단결정 재료에서 시도되고 있다. 대표적인 재료로서 Mn,Fe:LNO 가 있으나 Mn,Ce:LNO, Cu,Co:LNO, Tb,Fe:LNO 등도 연구되고 있고 Stoichiometric LNO 경우엔 Pr:LNO, Er:LNO, Tb:LNO 등이 연구되고 있다. 그 외에 Mn:YAlO$_3$도 약하긴 하지만 비휘발성이 최근 보고되었다. (중략)

  • PDF

Structure and Superconducting Properties of Ba-substituted (Ru,Cu)(Sr,Eu)$_2$(Eu,Ce)$_2Cu_2O_z$ System (Ba 치환에 따른 (Ru,Cu)(Sr,Eu)$_2$(Eu,Ce)$_2Cu_2O_z$ 계의 초전도 특성)

  • Lee, H.K.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • We investigated the effects of Ba and Cu co-substitution on the structural and superconducting properties of ($Ru_{1-y}Cu_y$)($Sr_{1.67-x}Ba_xEu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ samples. X-ray diffraction(XRD) reveals that single-phase samples can be obtained in the range from x = 0.1 to 0.2 for ($Ru_{0.5}Cu_{0.5}$)($Sr_{1.67-x}Ba_xEu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ and from y = 0.25 to 0.5 for ($Ru_{1-y}Cu_y$)($Sr_{1.47}Ba_{0.2}Eu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$, respectively. All samples with compositions of ($Ru_{0.5}Cu_{0.5}$)($Sr_{1.67-x}Ba_xEu_{0.33}$) ($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ (x = 0 - 0.33) show superconducting transition behavior and the onset transition temperature decreases slightly with increasing x in consistent with the change of hole concentration estimated from room temperature thermoelectric power measurements. The XRD and resistivity measurements for the ($Ru_{1-y}Cu_y$)($Sr_{1.47}Ba_{0.2}Eu_{0.33}$)($Eu_{1.34}Ce_{0.66}$) $Cu_2O_z$ system indicate that the partial substitution of Cu for Ru is necessary to form phase pure samples, but result in a small change in transition temperature in the single-phase region from x = 0.25 to 0.5.

Microstructural property and catalytic activity of nano-sized MnOx-CeO2/TiO2 for NH3-SCR (선택적 촉매 환원법 재료로서 나노 사이즈 MnOx-CeO2/TiO2 촉매에 대한 미세 구조적 특성과 촉매활성 평가)

  • Hwang, Sungchul;Jo, Seung-hyeon;Shin, Min-Chul;Cha, Jinseon;Lee, Inwon;Park, Hyun;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.115-120
    • /
    • 2016
  • $CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

The Effect of Nb2O5 on Cu-Nb-CeO2 Catalysts for Water Gas Shift Reaction of Compact Reformer (컴팩트 개질기용 수성가스전이 반응을 위한 Cu-CeO2 촉매에 대한 Nb2O5의 영향)

  • JEONG, CHANG-HOON;KIM, TAE-GWANG;BYON, HUI-JU;KIM, JU-HWAN;BAE, EUN-TAEK;SHEN, KAILIN;JEON, KYUNG-WON;JEONG, DAE-WOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • The water-gas shift reaction for the compact reformer was carried out at a gas hourly space velocity of 72,152 h-1 over the Cu-Nb-CeO2 catalysts prepared by co-precipitation method. In order to investigate the effect of Nb2O5 promotion over a Cu-CeO2 catalyst, the Nb2O5 loading amount was systematically changed from 0 to 5 wt.%. Among the prepared catalysts, the Cu-Nb-CeO2 (1%) catalyst showed the highest catalytic activity (CO conversion=61% at 400℃) as well as 100% CO2 selectivity. The high activity and stability of Cu-Nb-CeO2 (1%) catalyst are correlated to high Brunauer-Emmett-Teller surface area, small metallic Cu crystallite size, and enhanced redox property.

Diluted Synthesis of Manocrystalline CeO2 by Mechanical Milling (희석혼합체의 기계적 분쇄에 의한 나노 CeO2의 합성)

  • Lim, Geon-Ja;Kim, Tae-Eun;Lee, Jong-Ho;Lee, Hae-Weon;Rhee, Dong-Joo;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.764-768
    • /
    • 2002
  • The nanocrystalline $CeO_2$ was synthesized by mechanical milling and subsequent heat-treatment with the mixture of $Ce(OH)_4$ precursor and diluent, NaCl. Using deionized water, the diluent, NaCl, in the mixture has been easily dissolved out. Diffusion barrier was provided by the diluent during heat-treatment, which suppressed not only the coarsening of primary particle but also the agglormeration between the particles. Crystallite and aggregate size of $CeO_2$ depended on the concentration of diluent, temperature and time of heat-treatment; increased with the temperature and time increases. In case the mixture was heat-treated at high than $600^{\circ}C$, however, the crystallite size was saturated near 20 nm, which was supposed to be due to the densification of diluent.

Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives

  • Rathod, Sandip B.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2835-2840
    • /
    • 2010
  • A series of $MoO_3/CeO_2-ZrO_2$ catalysts with different Mo content (8 - 20 wt %) were prepared by simple co-precipitation followed by impregnation method and were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy dispersive spectroscopic (EDS) techniques. The prepared materials were tested for catalytic activity by the synthesis of benzimidazole derivatives using condensation of aromatic aldehydes and o-phenylenediamine by conventional and microwave method. Obtained results reveal that the catalytic activity increases with increase in Mo wt % loading. The best catalytic activity was obtained with 20 wt % $MoO_3/CeO_2-ZrO_2$. The particle size or crystallite size was estimated using Debye-Scherrer equation. After completion of reaction, the catalyst can be recovered efficiently and reused with consistent activity.

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF