Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.57

The Effect of Nb2O5 on Cu-Nb-CeO2 Catalysts for Water Gas Shift Reaction of Compact Reformer  

JEONG, CHANG-HOON (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University)
KIM, TAE-GWANG (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University)
BYON, HUI-JU (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University)
KIM, JU-HWAN (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University)
BAE, EUN-TAEK (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University)
SHEN, KAILIN (Department of Environmental Engineering, Changwon National University)
JEON, KYUNG-WON (Department of Environment and Energy Engineering, Kyungnam University)
JEONG, DAE-WOON (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.1, 2020 , pp. 57-64 More about this Journal
Abstract
The water-gas shift reaction for the compact reformer was carried out at a gas hourly space velocity of 72,152 h-1 over the Cu-Nb-CeO2 catalysts prepared by co-precipitation method. In order to investigate the effect of Nb2O5 promotion over a Cu-CeO2 catalyst, the Nb2O5 loading amount was systematically changed from 0 to 5 wt.%. Among the prepared catalysts, the Cu-Nb-CeO2 (1%) catalyst showed the highest catalytic activity (CO conversion=61% at 400℃) as well as 100% CO2 selectivity. The high activity and stability of Cu-Nb-CeO2 (1%) catalyst are correlated to high Brunauer-Emmett-Teller surface area, small metallic Cu crystallite size, and enhanced redox property.
Keywords
Compact reformer; Water gas shift reaction; $Nb_2O_5$ loading amount; Redox property;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 S. O. Choi and S. H. Moon, "Performance of $La_{1-x}Ce_{x}Fe_{0.7}Ni_{0.3}O_{3}$ perovskite catalysts for methane steam reforming", Catal. Today Vol. 146, No. 1-2, 2009, pp. 148-153, doi: https://doi.org/10.1016/j.cattod.2009.02.023.   DOI
2 J. Mi, J. Zhang, Y. Cao, C. Chen, X. Lin, J. Chen, and L. Jiang, "Sulfur resistant WGS catalyst for hydrogen production based on CoMo supported by Nb modified MgAl mixed oxide", Int. J. Hydrogen Energy, Vol. 42, No. 50, 2017, pp. 29935-29943, doi: https://doi.org/10.1016/j.ijhydene.2017.08.115.   DOI
3 X. Lin, C. Chen, J. Ma, X. Fang, Y. Zhan, and Q. Zheng, "Promotion effect of $Nb^{5+}\;for\;Cu/CeO_2$ water-gas shift reaction catalyst by generating mobile electronic carriers", Int. J. Hydrogen Energy, Vol. 38, No. 27, 2013, pp. 11847-11852, doi: https://doi.org/10.1016/j.ijhydene.2013.07.001.   DOI
4 H. S. Roh, I. H. Eum, and D. W. Jeong, "Low temperature steam reforming of methane over $Ni-Ce_{(1-x)}Zr(x)O2$ catalysts under severe conditions", Renewable Energy, Vol. 42, 2012, pp. 212-216, doi: https://doi.org/10.1016/j.renene.2011.08.013.   DOI
5 W. J. Jang, D. W. Jeong, J. O. Shim, and H. S. Roh, "The effect of calcination temperature on the performance of $Ni-Ce_{0.8}Zr_{0.2}O_{2}$ catalysts for steam reforming of methane under severe conditions", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 3, 2012, pp. 213-218, doi: https://doi.org/10.7316/KHNES.2012.23.3.213.   DOI
6 D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, K. W. Jeon, Y. C. Seo, and H. S. Roh, "A comparison study on high-temperature water-gas shift reaction over Fe/Al/Cu and Fe/Al/Ni catalysts using simulated waste-derived synthesis gas", J. Mater. Cycles Waste Manag., Vol. 16, No. 4, 2014, pp. 650-656, doi: https://doi.org/10.1007/s10163-014-0272-8.   DOI
7 C. Pedrero, T. Waku, and E. Iglesia, "Oxidation of CO in $H_2$-CO mixtures catalyzed by platinum: alkali effects on rates and selectivity", J. Catal., Vol. 233, No. 1, 2005, pp. 242-255, doi: https://doi.org/10.1016/j.jcat.2005.04.005.   DOI
8 A. Chougule and R. R. Sonde, "Modelling and experimental investigation of compact packed bed design of methanol steam reformer", Int. J. Hydrogen Energy, Vol. 44, No. 57, 2019, pp. 29937-29945, doi: https://doi.org/10.1016/j.ijhydene.2019.09.166.   DOI
9 C. Ratnasamy and J. P. Wagner, "Water gas shift catalysis", Catalysis Reviews Science and Engineering, Vol. 51, No. 3, 2009, pp. 325-440, doi: https://doi.org/10.1080/01614940903048661.   DOI
10 J. H. Park, J. H. Baek, G. H Jo, and K. B. Yi, "Catalytic characteristic of water-treated Cu/ZnO/MgO/$Al_2O_3$ catalyst for LT-WGS reaction", Trans. of Korean Hydrogen and New Energy Society, Vol. 30, No. 2, 2019, pp. 95-102, doi: https://doi.org/10.7316/KHNES.2019.30.2.95.   DOI
11 D. W. Jeong, J. O. Shim, W. J. Jang, and H. S. Roh, "A study on Pt-Na/$CeO_2$ catalysts for single stage water gas shift reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, 2012, pp. 111-116, doi: https://doi.org/10.7316/KHNES.2012.23.2.111.   DOI
12 J. O. Shim, H. S. Na, S. Y. Ahn, W. J. Jang, and H. S. Roh, "An optimization of aging time for low-temperature water-gas shift over Cu-Zn-Al catalyst", Trans. of Korean Hydrogen and New Energy Society, Vol. 30, No. 2, 2019, pp. 103-110, doi: https://doi.org/10.7316/KHNES.2019.30.2.103.   DOI
13 D. J. Seo, W. L. Yoon, K. S. Kang, and J. W. Kim, "Patent trend for hydrogen production technology by steam reforming of natural gas", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, pp. 464-480. Retrieved from http://www.koreascience.or.kr/article/JAKO200710736976806.page.
14 K. H. Kim, K. Y. Koo, U. H. Jung, and W. L. Yoon, "Preferential CO oxidation over Ce-promoted $Pt/\gamma-Al_2O_3$ catalyst", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 6, 2012, pp. 640-646, doi: https://doi.org/10.7316/KHNES.2012.23.6.640.   DOI
15 J. L. Ayastuy, M. P. Gonzalez-Marcos, and M. A. Gutierrez-Ortiz, "Promotion effect of Sn in alumina-supported Pt catalysts for CO-PROX", Catalysis Communications, Vol. 12, No. 10, 2011, pp. 895-900, doi: https://doi.org/10.1016/j.catcom.2011.02.011.   DOI
16 J. H. Kim, Y. S. Jang, J. C. Kim, and D. H. Kim, "Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol", Korean J. Chem. Eng., Vol. 36, No. 3, 2019, pp. 368-376, doi: https://doi.org/10.1007/s11814-018-0211-9.   DOI
17 Y. T. Seo, D. J. Seo, J. H. Jeong, and W. L. Yoon, "Development of compact fuel processor for 2 kW class residential PEMFCs", J. Power Sources, Vol. 163, No. 1, 2006, pp. 119-124, doi: https://doi.org/10.1016/j.jpowsour.2006.05.022.   DOI
18 S. B. Kim, M. S. Kim, S. W. Kim, and S. C. Hong "Reaction characteristics of Cu/$CeO_2$ catalysts for CO oxidation", Applied Chemistry for Engineering, Vol. 30, No. 5, 2019, pp. 620-626, doi: https://doi.org/10.14478/ace.2019.1067.   DOI
19 H. M. Kim, K. W. Jeon, H. S. Na, W. J. Jang, and D. W. Jeong, "The effect of Cu loading on the performance of $Cu-Ce_{0.8}Zr_{0.2}O_{2}$ catalysts for single stage water gas shift reaction", Trans. of Korean Hydrogen and New Energy Society, Vol. 28, No. 4, 2017, pp. 345-351, doi: https://doi.org/10.7316/KHNES.2017.28.4.345.   DOI
20 Y. S. Oh, T. Y. Song, Y. S. Baek, and L. S. Choi, "Efficiency analysis of compact type steam reformer", Trans. of Korean Hydrogen and New Energy Society, Vol. 13, No. 4, 2002, pp. 313-321. Retrieved from http://www.koreascience.or.kr/article/JAKO200230360539783.page.
21 K. G. Azzam, I. V. Babich, K. Seshan, and L. Lefferts, "Single stage water gas shift conversion over Pt/$TiO_2$-problem of catalyst deactivation", Applied Catalysis A: General, Vol. 338, No. 1-2, 2008, pp. 66-71, doi: https://doi.org/10.1016/j.apcata. 2007.12.020.   DOI
22 K. R. Hwang, S. K. Ihm, S. C. Park, and J. S. Park, "Pt/$ZrO_2$ catalyst for a single-stage water-gas shift reaction: Ti addition effect", Int. J. Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6044-6051, doi: https://doi.org/10.1016/j.ijhydene.2013.01.101.   DOI
23 S. B. T. Tran, H. Choi, S. Oh, and J. Y Park, "Defective $Nb_2O_5$-supported Pt catalysts for CO oxidation: promoting catalytic activity via oxygen vacancy engineering", J. Catal., Vol. 375, 2019, pp. 124-134, doi: https://doi.org/10.1016/j.jcat.2019.05.017.   DOI
24 C. A. Franchini, A. M. Duarte de Farias, E. M. Albuquerque, R. dos Santos, and M. A. Fraga, "Single-stage medium temperature water-gas shift reaction over Pt/$ZrO_2$ - support structural polymorphism and catalyst deactivation", Applied Catalysis B: Environmental, Vol. 117-118, 2012, pp. 302-309, doi: https://doi.org/10.1016/j.apcatb.2012.01.028.   DOI
25 C. K. Byun, H. B. Im, J. H. Park, J. H. Baek, J. M. Jeong, W. R. Yoon, and K. B. Yi, "Enhanced catalytic activity of Cu/Zn catalyst by Ce addition for low temperature water gas shift reaction", Clean Technology, Vol. 21, No. 3, 2015, pp. 200-206, doi: https://doi.org/10.7464/ksct.2015.21.3.200.   DOI
26 H. S. Na, D. W. Jeong, W. J. Jang, Y. L. Lee, and H. S. Roh, "A study on Cu based catalysts for water gas shift reaction to produce hydrogen from waste-derived synthesis gas", Tran s. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 3, 2014, pp. 227-233, doi: https://doi.org/10.7316/ KHNES.2014.25.3.227.   DOI
27 J. A Rodriguez, P. Liu, X. Wang, W. Wen, J. Hanson, J. Hrbek, M. Perez, and J. Evans, "Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides", Catal. Today, Vol. 143, No. 1-2, 2009, pp. 45-50, doi: https://doi.org/10.1016/j.cattod.2008.08.022.   DOI
28 L. Li, L. Song, H. Wang, C. Chen, Y. She, Y. Zhan, X. Lin, and Q. Zheng, "Water-gas shift reaction over CuO/$CeO_2$ catalysts: effect of $CeO_2$ supports previously prepared by precipitation with different precipitants", Int. J. Hydrogen Energy, Vol. 36, No. 15, 2011, pp. 8839-8849, doi: https://doi.org/10.1016/j.ijhydene.2011.04.137.   DOI
29 D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renewable Energy, Vol. 65, 2014, pp. 102-107, doi: https://doi.org/10.1016/j.renene.2013.07.035.   DOI
30 W. Yang, D. Li, D. Xu, and X. Wang, "Effect of $CeO_2$ preparation method and Cu loading on CuO/$CeO_2$ catalysts for methane combustion", Journal of Natural Gas Chemistry, Vol. 18, No. 4, 2009, pp. 458-466, doi: https://doi.org/10.1016/S1003-9953(08)60141-3.   DOI
31 F. Zhang, Q. Zheng, K. Wei, X. Lin, H. Zhang, J. Li, and Y. Cao, "Improved performance of Au/$Fe_2O_3$ catalysts promoted with $ZrO_2\;and\;Nb_2O_5$ in the WGS reaction under hydrogenrich conditions", Catal. Letters, Vol. 108, No. 3-4, 2006, pp. 131-136, doi: https://doi.org/10.1007/s10562-006-0047-5.   DOI
32 E. Ramirez-Cabrera, A. Atkinson, and D. Chadwick, "Reactivity of ceria, Gd- and Nb-doped ceria to methane", Applied Catalysis B: Environmental, Vol. 36, No. 3, 2002, pp. 193-206, doi: https://doi.org/10.1016/S0926-3373(01)00299-5.   DOI