• Title/Summary/Keyword: Clustering sampling

Search Result 86, Processing Time 0.022 seconds

A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud (LIDAR를 이용한 삼차원 점군 데이터의 삼각망 구성 방법 및 샘플링에 따른 암반 불연속면 방향 검출에 관한 연구)

  • Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, a LIDAR laser scanner was used to scan a rock slope around Mt. Gwanak and to produce point cloud from which directional information of rock joint surfaces shall be extracted. It was analyzed using two different algorithms, i.e. Ball Pivoting and Wrap algorithm, and four sampling intervals, i.e. raw, 2, 5, and 10 cm. The results of Fuzzy K-mean clustering were analyzed on the stereonet. As a result, the Ball Pivoting and Wrap algorithms were considered suitable for extraction of rock surface orientation. In the case of 5 cm sampling interval, both triangulation algorithms extracted the most number of the patch and patched area.

Selecting Examples to Be Labeled for Semi-Supervised Clustering Using Cluster-Based Sampling (군집화 기법을 이용한 준감독 군집화의 훈련예제 선정)

  • 김종성;강재호;류광렬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.646-648
    • /
    • 2004
  • 기계학습의 군집화(clustering) 기법은 예제들 간의 유사성에 근거하여 주어진 예제들을 무리 짓는 방법이다. 준감독(semi-supervised) 군집화는 카테고리가 부여된(labeled) 소수의 예제들을 적극적으로 활용하여 군집형태가 보다 자연스럽게 형성되도록 유도하는 군집화 방법이다. 준감독 군집화 문제에서 예제에 카테고리를 부여하는 작업은 현실적으로 극히 제한적이거나 카테고리를 부여하는데 소요되는 비용이 상당하므로, 제한된 자원 내에서 군집화에 효용성이 높을 예제들을 선정하여 카테고리를 부여하는 것이 필요하다. 본 논문에서는 기존 연구에서 능동적 학습의 초기 훈련예제 선정을 위해 제안된 군집기반 훈련예제 선정 방법을 준감독 군집화에 적용하여 군집 결과의 질을 향상시키고자 한다. 군집화를 이용한 예제 선정 방법은 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 가정하에 전체 예제를 활용하여 선정하고자 하는 예제 수만큼 군집을 생성 한 후. 각 군집의 중심점에 가장 가까운 예제들을 대표 예제로 선정하여 훈련 집합을 구성하는 방법이다 본 논문에서는 문서를 대상으로 하는 준감독 군집화 실험을 통해, 카테고리를 부여할 예제를 임의로 선정한 경우에 비해 군집화를 이용한 훈련 예제들로 준감독 군집화를 수행한 경우가 보다 좋은 군집을 형성함을 확인하였다.

  • PDF

Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm (붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정)

  • Park, Min-Jae;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • Optimal determination of cluster size has an effect on the result of clustering. In K-means algorithm, the difference of clustering performance is large by initial K. But the initial cluster size is determined by prior knowledge or subjectivity in most clustering process. This subjective determination may not be optimal. In this Paper, the genetic algorithm based optimal determination approach of cluster size is proposed for automatic determination of cluster size and performance upgrading of its result. The initial population based on attribution is generated for searching optimal cluster size. The fitness value is defined the inverse of dissimilarity summation. So this is converged to upgraded total performance. The mutation operation is used for local minima problem. Finally, the re-sampling of bootstrapping is used for computational time cost.

A Study on Generation Adequacy Assessment Considering Probabilistic Relation Between System Load and Wind-Power (계통 부하량과 풍력발전의 확률적 관계를 고려한 발전량 적정성 평가 연구)

  • Kim, Gwang-Won;Hyun, Seung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.52-58
    • /
    • 2007
  • This paper presents the wind-power model for generation adequacy assessment. Both wind-power and system load depend on time of a year and show their periodic nature with similar periods. Therefore, the two quantities have some probabilistic relations, and if one of them is given, the other can be decided with some probability. In this paper, the two quantities are quantized by k-means clustering algorithm and related probabilities among the cluster centers are calculated using sequential wind-power and system load data. The proposed model is highly expected to be applied for generation adequacy assessment by Monte-Carlo simulation with state sampling method.

A methodology to quantify effects of constitutive equations on safety analysis using integral effect test data

  • ChoHwan Oh;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2999-3029
    • /
    • 2024
  • To improve the predictive capability of a nuclear thermal hydraulic safety analysis code by developing a better constitutive equation for individual phenomenon has been the general research direction until now. This paper proposes a new method to directly use complex experimental data obtained from integral effect test (IET) to improve constitutive models holistically and simultaneously. The method relies on the sensitivity of a simulation result of IET data to the multiple constitutive equations utilized during the simulation, and the sensitivity of individual model determines the direction of modification for the constitutive model. To develop a robust and generalized method, a clustering algorithm using an artificial neural network, sample space size determination using non-parametric statistics, and sampling method of Latin hypercube sampling are used in a combined manner. The value of the proposed methodology is demonstrated by applying the method to the ATLAS DSP-05 IET experiment. A sensitivity of each observation parameter to the constitutive models is analyzed. The new methodology suggested in the study can be used to improve the code prediction results of complex IET data by identifying the direction for constitutive equations to be modified.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

Genetic Variability of Sorghum Charcoal Rot Pathogen (Macrophomina phaseolina) Assessed by Random DNA Markers

  • Bashasab, Rajkumar, Fakrudin;Kuruvinashetti, Mahaling S
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2007
  • Genetic diversity among selected isolates of Macrophomina phaseolina, a causal agent of charcoal rot (stalk rot) disease in sorghum was studied using PCR-RAPD markers. A set of ten isolates, from ten different rabi sorghum genotypes representing two traditional sorghum growing situations viz., Dharwad- a transitional high rainfall region and Bijapur- a semi-arid low rainfall region in South India. From a set of 40 random primers tested, amplicon profiles of 15 were reproducible. A total of 149 amplicon levels, with an average of 9.9 bands per primer, were available for analysis, of which 148 were polymorphic (99.3%). It was possible to discriminate all the isolates with any of the 15 primers employed. UPGMA clustering of data indicated that the isolates shared varied levels of genetic similarity within a range of 0.14 to 0.72 similarity coefficient index and it was suggestive that grouping of isolates was not related to sampling location in anyway. A high level of genetic heterogeneity of 0.28 was recorded among the isolates.

Community Characteristics of Ground Beetles in Four Gotjawal Terrains of Jeju Island, Korea (제주도의 곶자왈에 분포하는 지표성 딱정벌레 군집의 특성)

  • Jeon, Hyung-Sik;Yang, Kyoung-Sik;Lee, Ga-Eun;Kim, Won-Taek
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.226-232
    • /
    • 2008
  • Sampling of the ground beetles in four 'gotjawal' terrains of Jeju island was conducted from April to October, 2007, using pit-fall trap. Totally 2,887 individuals of 23 species belonged to 4 families were collected. The species diversity index was the highest at Aeweol gotjawal (AW), while it was the lowest in Hangyeong-Andeog gotjawal (HA). Clustering analysis revealed that the insect communities of four gotzawals were grouped in only one cluster. Jocheon-Hamdeog gotjawal (JH) formed a cluster with Gujwa-Sungsan gotjawal (GS) at the lowest chord distance (0.24). At the higher chord distance of 0.50, AW fused the cluster of JH and GS. HA fused with the rest three terrains, forming a single cluster at the highest chord distance of 0.98.

A study on design effect models for complex sample survey (설계효과모형 적용에 관한 연구)

  • Park, Inho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.523-531
    • /
    • 2014
  • Design effect is often used in designing and planning sample surveys and/or in evaluating the efficiency of complex design features of the surveys. In this study, we applied Gabler et al. (2006)'s design effect model to 2013 Consumer behavior survey for food that was carried out by stratified two-stage sampling. Usability and adequacy of the design model to a real survey data are discussed and evaluated.