• Title/Summary/Keyword: Clustering algorithm

Search Result 2,039, Processing Time 0.032 seconds

LVQ_Merge Clustering Algorithm for Cell Image Extraction (세포 영상 추출을 위한 LVQ_Merge 군집화 알고리즘)

  • Kwon, Hee Yong;Kim, Min Su;Choi, Kyung Wan;Kwack, Ho Jic;Yu, Suk Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.845-852
    • /
    • 2017
  • In this paper, we propose a binarization algorithm using LVQ-Merge clustering method for fast and accurate extraction of cells from cell images. The proposed method clusters pixel data of a given image by using LVQ to remove noise and divides the result into two clusters by applying a hierarchical clustering algorithm to improve the accuracy of binarization. As a result, the execution speed is somewhat slower than that of the conventional LVQ or Otsu algorithm. However, the results of the binarization have very good quality and are almost identical to those judged by the human eye. Especially, the bigger and the more complex the image, the better the binarization quality. This suggests that the proposed method is a useful method for medical image processing field where high-resolution and huge medical images must be processed in real time. In addition, this method is possible to have many clusters instead of two cluster, so it can be used as a method to complement a hierarchical clustering algorithm.

Speaker Identification with Estimating the Number of Cluster Based on Boundary Subtractive Clustering (경계 차감 클러스터링에 기반한 클러스터 개수 추정 화자식별)

  • Lee, Youn-Jeong;Choi, Min-Jung;Seo, Chang-Woo;Hahn, Hern-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.199-206
    • /
    • 2007
  • In this paper we propose a new clustering algorithm that performs clustering the feature vectors for the speaker identification. Unlike typical clustering approaches, the proposed method performs the clustering without the initial guesses of locations of the cluster centers and a priori information about the number of clusters. Cluster centers are obtained incrementally by adding one cluster center at a time through the boundary subtractive clustering algorithm. The number of clusters is obtained from investigating the mutual relationship between clusters. The experimental results for artificial datum and TIMIT DB show the effectiveness of the proposed algorithm as compared with the conventional methods.

Clustering load patterns recorded from advanced metering infrastructure (AMI로부터 측정된 전력사용데이터에 대한 군집 분석)

  • Ann, Hyojung;Lim, Yaeji
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.969-977
    • /
    • 2021
  • We cluster the electricity consumption of households in A-apartment in Seoul, Korea using Hierarchical K-means clustering algorithm. The data is recorded from the advanced metering infrastructure (AMI), and we focus on the electricity consumption during evening weekdays in summer. Compare to the conventional clustering algorithms, Hierarchical K-means clustering algorithm is recently applied to the electricity usage data, and it can identify usage patterns while reducing dimension. We apply Hierarchical K-means algorithm to the AMI data, and compare the results based on the various clustering validity indexes. The results show that the electricity usage patterns are well-identified, and it is expected to be utilized as a major basis for future applications in various fields.

Context-awareness User Analysis based on Clustering Algorithm (클러스터링 알고리즘기반의 상황인식 사용자 분석)

  • Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.942-948
    • /
    • 2020
  • In this paper, we propose a clustered algorithm that possible more efficient user distinction within clustering using context-aware attribute information. In typically, the data provided to classify interrelationships within cluster information in the process of clustering data will be as a degrade factor if new or newly processing information is treated as contaminated information in comparative information. In this paper, we have developed a clustering algorithm that can extract user's recognition information to solve this problem in using K-means algorithm. The proposed algorithm analyzes the user's clustering attributed parameters from user clusters using accumulated information and clustering according to their attributes. The results of the simulation with the proposed algorithm showed that the user management system was more adaptable in terms of classifying and maintaining multiple users in clusters.

An Improved Clustering Method with Cluster Density Independence

  • Yoo, Byeong-Hyeon;Kim, Wan-Woo;Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.15-20
    • /
    • 2015
  • In this paper, we propose a modified fuzzy clustering algorithm which can overcome the center deviation due to the Euclidean distance commonly used in fuzzy clustering. Among fuzzy clustering methods, Fuzzy C-Means (FCM) is the most well-known clustering algorithm and has been widely applied to various problems successfully. In FCM, however, cluster centers tend leaning to high density clusters because the Euclidean distance measure forces high density cluster to make more contribution to clustering result. Proposed is an enhanced algorithm which modifies the objective function of FCM by adding a center-scattering term to make centers not to be close due to the cluster density. The proposed method converges more to real centers with small number of iterations compared to FCM. All the strengths can be verified with experimental results.

A Clustering Tool Using Particle Swarm Optimization for DNA Chip Data

  • Han, Xiaoyue;Lee, Min-Soo
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.89-91
    • /
    • 2011
  • DNA chips are becoming increasingly popular as a convenient way to perform vast amounts of experiments related to genes on a single chip. And the importance of analyzing the data that is provided by such DNA chips is becoming significant. A very important analysis on DNA chip data would be clustering genes to identify gene groups which have similar properties such as cancer. Clustering data for DNA chips usually deal with a large search space and has a very fuzzy characteristic. The Particle Swarm Optimization algorithm which was recently proposed is a very good candidate to solve such problems. In this paper, we propose a clustering mechanism that is based on the Particle Swarm Optimization algorithm. Our experiments show that the PSO-based clustering algorithm developed is efficient in terms of execution time for clustering DNA chip data, and thus be used to extract valuable information such as cancer related genes from DNA chip data with high cluster accuracy and in a timely manner.

Application of Principal Component Analysis Prior to Cluster Analysis in the Concept of Informative Variables

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1057-1068
    • /
    • 2003
  • Results of using principal component analysis prior to cluster analysis are compared with results from applying agglomerative clustering algorithm alone. The retrieval ability of the agglomerative clustering algorithm is improved by using principal components prior to cluster analysis in some situations. On the other hand, the loss in retrieval ability for the agglomerative clustering algorithms decreases, as the number of informative variables increases, where the informative variables are the variables that have distinct information(or, necessary information) compared to other variables.

A K-means-like Algorithm for K-medoids Clustering

  • Lee, Jong-Seok;Park, Hae-Sang;Jun, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.51-54
    • /
    • 2005
  • Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. In this paper we propose a new algorithm for K-medoids clustering which runs like the K-means algorithm. The new algorithm calculates distance matrix once and uses it for finding new medoids at every iterative step. We evaluate the proposed method using real and synthetic data and compare with the results of other algorithms. The proposed algorithm takes reduced time in computation and better performance than others.

  • PDF

Fuzzy Modeling based on FCM Clustering Algorithm (FCM 클러스터링 알고리즘에 기초한 퍼지 모델링)

  • 윤기찬;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.373-373
    • /
    • 2000
  • In this paper, we propose a fuzzy modeling algorithm which divides the input space more efficiently than convention methods by taking into consideration correlations between components of sample data. The proposed fuzzy modeling algorithm consists of two steps: coarse tuning, which determines consequent parameters approximately using FCRM clustering method, and fine tuning, which adjusts the premise and consequent parameters more precisely by gradient descent algorithm. To evaluate the performance of the proposed fuzzy mode, we use the numerical data of nonlinear function.

  • PDF

Single Pass Algorithm for Text Clustering by Encoding Documents into Tables

  • Jo, Tae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1749-1757
    • /
    • 2008
  • This research proposes a modified version of single pass algorithm specialized for text clustering. Encoding documents into numerical vectors for using the traditional version of single pass algorithm causes the two main problems: huge dimensionality and sparse distribution. Therefore, in order to address the two problems, this research modifies the single pass algorithm into its version where documents are encoded into not numerical vectors but other forms. In the proposed version, documents are mapped into tables and the operation on two tables is defined for using the single pass algorithm. The goal of this research is to improve the performance of single pass algorithm for text clustering by modifying it into the specialized version.

  • PDF