• 제목/요약/키워드: Cluster estimation

검색결과 213건 처리시간 0.023초

노드 위치 예측을 통한 클러스터링 기반의 센서네트워크 키설정 메커니즘 (Key Establishment Mechanism for Clustered Sensor Networks Through Nodes' Location Estimation)

  • 도인실;채기준
    • 정보처리학회논문지C
    • /
    • 제17C권2호
    • /
    • pp.165-172
    • /
    • 2010
  • 다양한 분야에서 응용될 수 있는 센서 네트워크 통신에 안전성을 제공하기 위해서는 센서 노드 간 pairwise 키설정이 기본이 되어야한다. 본 논문에서는 네트워크 필드를 육각형의 클러스터로 나누고 각 센서 노드마다 예상되는 위치에 따라 세 개의 서로 다른 키 정보를 사전에 나누어 주어 노드 배치 후 갖고 있는 정보를 이용하여 모든 이웃 노드와의 pairwise 키를 설정할 수 있도록 한다. 특히 키스트링 기법을 적용하여 이를 클러스터링 정보와 연계되도록 함으로써 적은 양의 정보를 가지고도 이웃한 모든 노드들 간에 pairwise 키를 설정할 수 있도록 하였다. 제안된 키설정 메커니즘을 통하여 필요한 메모리의 양을 줄이면서도 보안 강도를 높일 수 있음을 증명한다.

Multi-communication layered HPL model and its application to GPU clusters

  • Kim, Young Woo;Oh, Myeong-Hoon;Park, Chan Yeol
    • ETRI Journal
    • /
    • 제43권3호
    • /
    • pp.524-537
    • /
    • 2021
  • High-performance Linpack (HPL) is among the most popular benchmarks for evaluating the capabilities of computing systems and has been used as a standard to compare the performance of computing systems since the early 1980s. In the initial system-design stage, it is critical to estimate the capabilities of a system quickly and accurately. However, the original HPL mathematical model based on a single core and single communication layer yields varying accuracy for modern processors and accelerators comprising large numbers of cores. To reduce the performance-estimation gap between the HPL model and an actual system, we propose a mathematical model for multi-communication layered HPL. The effectiveness of the proposed model is evaluated by applying it to a GPU cluster and well-known systems. The results reveal performance differences of 1.1% on a single GPU. The GPU cluster and well-known large system show 5.5% and 4.1% differences on average, respectively. Compared to the original HPL model, the proposed multi-communication layered HPL model provides performance estimates within a few seconds and a smaller error range from the processor/accelerator level to the large system level.

Confidence Interval for the Difference or Ratio of Two Median Failure Times from Clustered Survival Data

  • Lee, Seung-Yeoun;Jung, Sin-Ho
    • 응용통계연구
    • /
    • 제22권2호
    • /
    • pp.355-364
    • /
    • 2009
  • A simple method is proposed for constructing nonparametric confidence intervals for the difference or ratio of two median failure times. The method applies when clustered survival data with censoring is randomized either (I) under cluster randomization or (II) subunit randomization. This method is simple to calculate and is based on non-parametric density estimation. The proposed method is illustrated with the otology study data and HL-A antigen study data. Moreover, the simulation results are reported for practical sample sizes.

Exploratory Methods for Joint Distribution Valued Data and Their Application

  • Igarashi, Kazuto;Minami, Hiroyuki;Mizuta, Masahiro
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.265-276
    • /
    • 2015
  • In this paper, we propose hierarchical cluster analysis and multidimensional scaling for joint distribution valued data. Information technology is increasing the necessity of statistical methods for large and complex data. Symbolic Data Analysis (SDA) is an attractive framework for the data. In SDA, target objects are typically represented by aggregated data. Most methods on SDA deal with objects represented as intervals and histograms. However, those methods cannot consider information among variables including correlation. In addition, objects represented as a joint distribution can contain information among variables. Therefore, we focus on methods for joint distribution valued data. We expanded the two well-known exploratory methods using the dissimilarities adopted Hall Type relative projection index among joint distribution valued data. We show a simulation study and an actual example of proposed methods.

고정밀 이송기구의 위치결정정밀도에 대한 측정불확도 요소 분석 (Measurement Uncertainty Analysis of Positioning Accuracy for High Precision Feed Mechanism)

  • 이정훈;윤상환;박민원
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.494-499
    • /
    • 2012
  • Reliable results can't be derived without the notion of measurement uncertainty. The reason is that the measured value includes a lot of uncertain factors. Finding the factor that affect the measurement of parameter is important for estimation of measurement uncertainty. In this paper, the evaluation of uncertainty analysis about positioning accuracy measurements of high precision feed mechanism is presented to evaluate the important factors of uncertainty.

Determining the Optimal Number of Signal Clusters Using Iterative HMM Classification

  • Ernest, Duker Junior;Kim, Yoon Joong
    • International journal of advanced smart convergence
    • /
    • 제7권2호
    • /
    • pp.33-37
    • /
    • 2018
  • In this study, we propose an iterative clustering algorithm that automatically clusters a set of voice signal data without a label into an optimal number of clusters and generates hmm model for each cluster. In the clustering process, the likelihood calculations of the clusters are performed using iterative hmm learning and testing while varying the number of clusters for given data, and the maximum likelihood estimation method is used to determine the optimal number of clusters. We tested the effectiveness of this clustering algorithm on a small-vocabulary digit clustering task by mapping the unsupervised decoded output of the optimal cluster to the ground-truth transcription, we found out that they were highly correlated.

공작기계 주축회전체 진동 측정에서의 불확도 추정 방법 (Estimation of Measurement Uncertainty for Vibration Tests in the Machine Tool Main Spindle)

  • 이정훈;윤상환;;박민원
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.404-409
    • /
    • 2011
  • Report on the notion of uncertainty is important. The reason is that the measured value includes a lot of uncertain factors. Reliable results can't be derived without the notion of uncertainty. The mathematical model to evaluate uncertainty considering the quality of vibration is important to evaluate uncertainty, and it must contain the every quantity which contributes significantly to uncertainty in the measured results. In this paper, the evaluation of uncertainty analysis about rotor vibration measurements of machine tools is presented to evaluate the most important factors of uncertainty.

주파수 선택적 채널에서 OFDMA 시스템을 위한 적응 빔포밍 방법 (Channel-Adaptive Beamforming Method for OFDMA Systems in frequency-Selective Channels)

  • 한승희;이규인;안재영;조용수
    • 한국통신학회논문지
    • /
    • 제30권10C호
    • /
    • pp.976-982
    • /
    • 2005
  • In this paper, a channel-adaptive beamforming method is proposed for OFDMA (Orthogonal Frequency Division Multilexing Access) systems with smart antenna, in which the size of a cluster is determined adaptively depending on the frequency selectivity of the channel. The proposed method consists of 4 steps: initial channel estimation, refinement of channel estimates, region-splitting, and computation of weight vector for each region. In the proposed method, the size of a cluster for resource unit is determined adaptively according to a region-splitting criterion. It is shown by simulation that the proposed method shows good performances in both frequency-flat and frequency-selective channels.

The Use of AFLP Markers for Cultivar Identification in Hydrangea macrophylla

  • Lee, Jae Ho;Hyun, Jung Oh
    • 한국산림과학회지
    • /
    • 제96권2호
    • /
    • pp.125-130
    • /
    • 2007
  • The principal morphological characters used for identification of hydrangea cultivars are often dependent on agroclimatic conditions. Furthermore, information on the selection or the genetic background of the hydrangea breeding is so rare that a molecular marker system for cultivar identification is needed. Amplified fragment length polymorphism (AFLP) markers were employed for fingerprinting Hydrangea macrophylla cultivars and candidate cultivars of H. macrophylla selected in Korea. One AFLP primer combination was sufficient to distinguish 17 H. macrophylla cultivars and 4 candidate cultivars. The profile of 19 loci that can minimize the error of amplification peak detection was constructed. AFLP markers were efficient for identification, estimation of genetic distances between cultivars, and cultivar discrimination. Based on the observed AFLP markers, genetic relationship was reconstructed by the UPGMA method. Seventeen H. macrophylla cultivars and H. macrophylla for. normalis formed a major cluster, and candidate cultivars selected in Korea formed another cluster.

직물의 마찰음에 대한 감성 평가 및 예측 시스템 개발 (Development of an Affective Quality Evaluation and Estimation System for Fabric Frictional Sound)

  • 박장운;김수진;양윤정;한아름;김춘정;조길수;유희천
    • 대한인간공학회지
    • /
    • 제29권2호
    • /
    • pp.217-224
    • /
    • 2010
  • Research has been conducted to examine the effects of mechanical and sound characteristics of fabrics on affective quality. The present study developed the Affective Quality Evaluation and Estimation System for Textiles (AQEEST) with distinguished features that can be effectively used in the affective research of fabric frictional sound. The AQEEST consists of three subsystems (affective quality evaluation, affective quality estimation, and audible distance estimation subsystems) and each subsystem consists of three to four modules (e.g., evaluation condition setup, evaluation experimentation, and textile database management modules) depending on its functional requirements. The affective quality evaluation subsystem was designed to help administer an experiment in a systematic manner and present acoustic and visual stimuli simultaneously in various gait conditions (walking, jogging, and running) to mimic a more realistic situation of textile frictional sound production. Next, the affective quality estimation subsystem was designed to estimate the sound characteristics, affective qualities, overall psychological satisfaction, and reference cluster of a textile using its mechanical and/or sound characteristic information. Lastly, the audible distance estimation subsystem was designed to estimate the just noticeable sound pressure levels and audible distances of a textile for various gait conditions using its mechanical characteristic information. The AQEEST can be upgraded by accommodating more affective quality study results for various textiles.