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Abstract

A simple method is proposed for constructing nonparametric confidence intervals for the difference or ratio
of two median failure times. The method applies when clustered survival data with censoring is randomized
either (I) under cluster randomization or (II) subunit randomization. This method is simple to calculate
and is based on non-parametric density estimation. The proposed method is illustrated with the otology

study data and HL-A antigen study data. Moreover, the simulation results are reported for practical sample
sizes.
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1. Introduction

Many clinical trials involve the clustered survival data which include times to multiple occurrences
of the same type of event. One of important characteristics of this type of data is that times are
usually correlated within cluster. There have been many studies for analyzing the clustered survival
data that take into account the correlation structure between the various times obtained for the
same subject. Xie and Waksman (2003) derived a sample size estimation for the survival times as
the primary endpoint to design a clinical trial with the clustered survival data. Recently, issues
on developments in design and analysis of cluster randomized trials have been reviewed in a paper
celebrating the 25" Anniversary of Statistics in Medicine by Campbell et al. (2007). Among many
methodological issues in analysing the clustered survival data, we simply focus on comparing two
survival curves by estimating the confidence interval of the median survival times in this paper.

In survival analysis, median failure time is often used as a meaningful summary measure to compare
the survival experience between different groups. Methods for estimating the confidence interval
of the median failure time have been studied extensively for one-sample problem. Brookmeyer and
Crowley (1982), Emerson (1982) and Slud et al. (1984) developed the procedures by investigating
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Table 1.1. Survival of ventilating tubes for 78 children with otitis media(The paired survival times (in months) are for right and
left ears, respectively, and censoring times are marked with + sign)

(i) Control group (n1 = 38)
(3.1,481), (127, 6.0), (3.1,64), (85, 12.7), (9.1, 9.1), (0.5, 5.1), (18.1, 15.0), (6.0, 6.0), (6.4, 6.4),
(4.4+, 1.3), (12.8,12.8), (8.8, 8.8), (2.8+, 2.8+), (9.3, 27.1), (6.1, 6.1), (17.9, 20.9), (9.3, 3.1),
(2.9, 1.0), (9.1,9.1), (5.8,9.3), (2.9, 1.1), (0.8, 8.1), (3.0,15.8), (9.4, 9.4); (3.1, 3.1), (7.6, 10.1),
(5.5, 5.5), (0.7,0.7), (7.0, 7.0), (11.7, 3.1), (14.3, 3.2)

(i1) Treatment group (ny = 40)
(11.9, 8.8), (154, 9.2), (9.3, 9.3), (15.0, 0.9), (15.0, 11.9), (17.8, 12.2), (5.9, 8.7), (8.9, 12.6),
(0.6, 5.7), (6.0,9.4), (14.6,9.0), (12.1,2.9), (3.0,3.0), (24.9,8.7), (5.2, 9.0), (24.3, 18.8),
(152, 12.5), (33.0, 12.1), (13.1,0.7), (6.1, 17.14), (9.5, 3.4), (15.1, 17.8), (5.8, 5.8), (0.6, 3.0),
(2.8, 1.6), (6.2,9.0), (8.7, 3.4), (20.9+, 3.4), (9.2, 6.0), (6.4, 14.3+), (8.8, 8.8), (18.5,13.3),
(12.2,12.2), (12.5+, 8.8), (8.5, 21.7), (1.8, 20.7), (6.2, 9.0), (9.7, 11.14), (6.0, 6.0), (8.7, 8.7)
Ref. Howie, V. M. and Schwartz, R. H. (1983)

the generalized sign test for the censored data while Efron (1981), Reid (1981) and Hutson (2001)
proposed the bootstrap confidence intervals. On the other hand, for two-sample median comparison
procedures for censored survival data, Wang and Hettmansperger (1990) developed the method for
estimating the confidence interval of the median failure time, in which for the non-shift model,
non-parametric density estimation is involved. Su and Wei (1993) developed a minimum dispersion
statistic based on Kaplan-Meier estimators and a simple nonparametric confidence interval of the
difference or ratio of two median failure times with censoring observations. These methods are based
on the assumption that the failure times are independent. However, in many biomedical studies,
this independence assumption might not hold. Jung and Su (1993) have generalized the method
of Su and Wei (1993) to paired failure times. In this paper, we extend the method of Jung and
Su (1993) to the clustered survival data, in which more than two subjects are correlated within a
cluster. The form of the variance-covariance matrix of the two Kaplan-Meier estimates is the same
except for taking into account of the correlated subjects within a cluster.

First, we consider the cases where a large number of independent clusters are randomized to two
arms. Each cluster consists of some (sub)units which are usually correlated each other. For example,
in an otology study (Howie and Schwartz, 1983; Teele et al, 1989), 78 children (clusters) suffering
from otitis media in the ears (units) received ventilating tubes as a surgical intervention and were
randomized to either no treatment (ny = 38) or a post-surgery treatment (n, = 40). The paired
survival times of tubes were observed from the right and left ears of each child. Children were
regularly followed up to check if tubes were functioning or not. One of the study aims was to
determine if the treatment extends the life time of tubes or not. Table 1.1 reports the data set
taken from Le (1997).

Secondly, in a clinical trial, we may randomize a number of sites from each subject (such as teeth or
ears) to different treatments. In this case, the sites (units) share similar characteristics, so that they
tend to be dependent, whereas the subjects (clusters) are independent. An example of this type of
clustered survival data is taken from a clinical trial conducted to evaluate the influence of HL-A
(human lymphocype antigen) on the survival of allogeneic grafts (defined as the time to rejection
of graft) in burned patients (Batchelor and Hackett, 1970). The donor and recipient were matched
for ABO blood groups and either closely or poorly matched for HL-A antigens. Selected skin-grafts
from at least two unrelated typed donners were applied to the patients, so that some of them
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Table 1.2. Days of skin graft survival on each burn 16 patients and + indicates censoring

Patient 1 2 3 4 5 6 7 8
Close match - 24 - 37 19 - 571,571 93
Poor match 19 - 18,18 29 13 19,19 15 26
Patient 9 10 11 12 13 14 15 16
Close match 16 22 20 18 77,63,29 - 29 60T
Poor match 11 17 26 21 43 28+ 28+ 15,18 40

Ref. Batchelor, J. R. and Hackett, M. (1970)

involved close HL-A match and the others poor match. The survival times of closely matched and
poorly matched skin grafts (units) were observed with both types of graft applied to each patient
(cluster). The objective was to discover whether avoiding severe HL-A incompatibility will extend
allograft survival time. The survival of allogeneic grafts within each subject tend to be correlated.
Table 1.2 reports the data set taken from Batchelor and Hackett (1970).

In this paper, we propose nonparametric confidence intervals for the difference or ratio of two me-
dian survival times from clustered survival data under cluster randomization and under subunit
randomization, respectively. Our asymptotic results are based on large number of clusters whereas
number of subunits within each cluster is bounded. In Section 2, we derive a nonparametric es-
timation procedure for the confidence intervals of the difference or ratio of two medians in the
clustered survival data. In Section 3, we illustrate the proposed procedures using two examples
previously introduced. In Section 4, we conduct simulation studies to investigate the performance
of the proposed methods for practical sample sizes and a short discussion is given in Section 5.

2. Nonparametric Confidence Intervals for the Difference or Ratio of Two Medians

As described in the previous section, we consider two types of randomization for clustered survival
data in estimating the confidence intervals for the difference or ratio of two medians. One is for the
clustered survival data under cluster randomization and the other is for the clustered survival data
under subunit randomization.

2.1. Confidence interval under cluster randomization

Suppose that ny clusters are randomized to group k(= 1,2). Let n = ni + n2. For cluster

i(=1,...,nx) in group k, let my; be the number of units, usually called cluster size, and (Trij, §j =
1,...,mgi) be their survival times. Units within each cluster have a common marginal survival
distribution with survivor function Sk(t) and cumulative hazard function Ax(t) = —log Si(t). We

do not specify the marginal and joint distribution functions.

Because of early termination of study or loss to follow-up, the survival times, Tk;;, may not be
completely observed. In conjunction with survival time Tk;;, let Cis; be the censoring time. Then,
from units in cluster i of group k, we observe {(Xyij, Agij), 5 = 1,..., Mui}, where Xgi; = Thij A
Chij, Drij = I(Thij < Crij) and a A b = min(a,b). We assume that (Ckij, j = 1,...,mx:) are
independent of (T, 7 = 1,...,my;). Note that censoring times may be correlated within each
cluster (as in common censoring time case) and may have different distributions in different groups.
We assume that the maximum cluster size is bounded, and asymptotic theories in this paper are
applied to large number of clusters.
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Let Yiij(t) = I(Xki; > t) and Niij(t) = Agi;I(Xki; < t) be the at-risk and the death processes,

respectively, for the j** subunit of cluster i in arm k. Also define Yy = Y 1%, Z;”:kf Yii; and
N = Y % E;n:’“f Niij. Let Si(t) be the Kaplan-Meier estimator obtained by assigning equal

weight to each subunit. Let ég be the 100(1 — p)% quantile of group k sample, i.e.
Sk (ég) =p.

With p =1/2, éi is a sample median. For notational simplicity, we drop the superscript p from éi
Let yx(¢) denote the limit of n™ Y% (¢). Then, by Ying and Wei (1994},

Mg M

VA (300 -5) = p =33 [ vt Qb ) + 0,

i=1 j=1
=3
=7 €ri + Op(1)7
v

where My;; (t) = fot{deij(S) — Yiij (S)dAk(S)} and €; = —p Z;n:kf Oak yk_l(t)deij (t)
Since €x; (i = 1,...,n%) are independent 0-mean random variables, by the central limit theorem,
7(Sk(8x) — p) is approximately normal with mean 0 and variance o2 that can be consistently
estimated by
1
=1

where é; is obtained from ex; by replacing 8%, yx(t) and Mi;;(t) with 85, Yi(t)/n and
t
Wy (€) = | {dNiss(s) = Yisy(s)ahe(s)}
0

Here, Ay(t) = fot Y, ' (s)dNyi(s) is the Nelson’s (Nelson, 1969) estimator of Ax(t) obtained from the
subunits in group %.

Suppose that we are interested in making inferences about 7 = g(61, 82), for some given function g.
For example, 7 may be the difference 2 — 81 or the ratio 82/6;. Furthermore, suppose that 2 can
be expressed as 62 = h(r,0:). Consider the quantity

W(r,00) = M5O —pF | nlSa(hlr.00)) —p}”

o7

Then, under Hg : 7 = 79,
11}(7'0) = lélf VV(T()7 91)
1

asymptotically has a chi-square distribution with 1 degree of freedom. The proof is the same as that
given in the Appendix of Su and Wei (1993), except for the form of variance of the two Kaplan-Meier
estimates. Hence, we reject Ho : 7 = 7o, with significance level «, if w(7o) > x3(a), where x3(a) is
the 100a upper percentile of xi. Furthermore, 100(1 — a)% confidence region for 7 is given as

{7 :w(r) < xi(a)}.
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2.2. Confidence interval under subunit randomization

Suppose that cluster i (= 1,...,n) has m; units and m;x of which are assigned to treatment & (=
1,2), mi + mi2 = my;. Let Tiga, ..., Tikm,, be survival times for units in treatment k. Since units
within a cluster share common characteristics, their survival times (T311, . . ., Titm,,» Li2i, - - - Tizm i2)
tend to be positively correlated. Let Cix; be the censoring time. Then, from units in cluster i, we
observe {(Xik:j, Aikj), j = 1, ey Mk, k= 1,2}, where Xikj = TiijCikj and Aik]‘ = I(Tzkj S C,kj)
We assume that (Cixj, j = 1,...,mik, k = 1,2) are independent of (Tiks, j = 1,..., Mk, k = 1,2).
Censoring times may be correlated within each cluster as in common censoring case. Let Yig; ) =
I(Xi; > t) and Nigj(t) = A I(Xik; < t) be the at-risk and the death processes, respectively,
for the jth subunit assigned to arm k from cluster i. Also define Yy = 377, > 725 Yie; and
N =37, Z;”:“f N;i;. Let gk(t) be the Kaplan-Meier estimator obtained by assigning equal
weight to each unit.

We assume that within treatment group k, (Tix;, 1 <4 < n,1 < j < my) are marginally identically
distributed with survivor function Sk(t) and cumulative hazard function Ax(t) = —log Sx(t). By
Ying and Wei (1994) ,

n Mk

Vn(Su(0) — p) = —p\/lﬁ 1231 ; /0 (t)dMix;(t) + op(1)

= % Z ik + 0p(1)

where Mig; (t) = [o{dNix; () — Yir; () }dAx(s), yx(t) is the limit of n 'Y (t) and e = —p ) 7% N

y (¢ )dMlkJ( ). Since ¢; = (e;1,€:2)7 (i = 1,...,n) are independent 0-mean random vectors, by
the central limit theorem, v/n(S1(61) — p, S2(f2) — p) is approximately normal with mean 0 and
covariance matrix V that can be consistently estimated by

n
- 1ZMT
V=- €€
n <
i=1

where &; is obtained from ¢; by replacing 8, yx(t) and M;x;(t) with Ok, Yi(t)/n and

Mix;(t) = /Ot{dNikj(S) — Yirj(s)dAk(s)},

respectively. Here, A(t fO (5)dNg(s) is the Nelson’s (Nelson, 1969) estimator of Ax(t)
obtained from the subunlts in arm k

Similarly, let 7 = g{(61,02) and 6> = h(r,01),
N . .\ 51(01) —
W(r,81) = n($1(601) — p, Sa(h(r,61)) —p)V " < oo Iip> ’
w(r) = iglf W(r,01).
1

Then under Ho : 7 = 70, w(r) = infy, W (70,61) is asymptotically chi-square distributed with 1
degree of freedom. Therefore, 100(1 — ) % confidence region for 7 is given as

{rw(r) < X?(a)}.
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Figure 3.1. Kaplan-Meier curves for control and treatment groups

3. Example

We first apply the proposed method to the otology study (Howie and Schwartz, 1983; Teele et al.,
1989) in which 78 children with otitis media were randomized into either no treatment (n1 = 38) or
a post-surgery treatment (n, = 40). The paired survival times of tubes were observed from the right
and left ears of each child and shown in Table 1.1. In this case, two arms consist of independent
clusters with the paired survival times for each cluster.

As described in Section 2.1, we assume that the paired survival times for right and left ears have
a common marginal survival distribution, Si(t), for the kth treatment group. Let 6; and 02 be
the median failure times for the control and the treatment groups, respectively. The Kaplan-Meier
curves of ventilating tubes for two groups are presented in Figure 3.1. The median failure time
estimates 6; and 62 are 7 and 9 months, respectively. For the parameter 7 = 61/6, the point
estimate % is 0.78, with 95 per cent confidence interval (0.64,1.01). For the parameter 7 = 61 — 62,
# is —2 with 95 per cent confidence interval (—3.49,0.09). From these two results, the effect of
treatment seems to be marginally significant in terms of the median failure time.

The second example is from a clinical trial by Batchelor and Hatckett (1970) as discussed in Section
1. The survival times of closely matched and poorly matched skin grafts (units) were observed with
both types of graft applied to each patient, so that the two arms consist of correlated units. Based
on the assumption that the marginal survival distributions for the same groups are common, the
Kaplan-Meier survival curves for these two groups are presented in Figure 3.2. The survival curve
for the closely matched skin grafts seems to be better than that for the poorly matched skin grafts.
The median time estimates 6, for the closely matched group and . for the poorly matched are
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Figure 3.2. Kaplan-Meier curves for close match and poor match groups

29 and 19 days, respectively. For the parameter 7 = 61/62, the point estimate 7 is 1.53, with 95
per cent confidence interval (0.94, 3.49). For the parameter 7 = 01 — 0>, 7 is 10 days, with 95 per
cent confidence interval (—1.66, 44.96). These results do not provide the significant evidence that
avoiding severe HL-A incompatibility will extend allograft survival time. Jung and Su (1993) also
analyzed a subset of this data in which only 11 patients are considered since 5 patients has only
one matched skin graft available. From their results, the point estimate 7 is 1.38, for the parameter
7 = 61/65, with a 95 per cent confidence interval (0.82, 3.75) while for the parameter 7 = 0y — 62,
7 is 8 days, with 95 per cent confidence interval (—5.00, 46.00). These results lead to the same
conclusion with wider confidence intervals by using the partial data.

4. Simulation Results

For investigating the finite sample performance of the proposed methods, simulation studies have
been implemented. By choosing p = 1/2, we limit our simulations to medians. Table 4.1 reports
simulation results under cluster randomization and under dependent subunit randomization. The
empirical coverage probabilities of the 95 per cent confidence interval for 7 = 01/6, are presented
for a selection of sample sizes, censoring fractions, correlation coefficients and the hazard ratios.

We first generate the clustered survival times under cluster randomization, in which cluster sizes
mu; were independently generated from a discrete uniform distribution between 1 and 10. Given
cluster size my;, clustered survival times were generated by modifying Moran’s algorithm {Moran,
1967). Let (Ui,...,Unm,,) and (V4,...,Vi,,) be i.id. normal random vectors with marginally
mean 0 and variance 1, and exchangeable structure with correlation coefficient (/p. 'Then we define
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Table 4.1. Empirical coverage of 95 per cent confidence interval for 7 = 01 /62(Group 1 hazard rate is set at A; = 1)

~ (i) Under cluster randomization

P n1 n2 Censoring A2 =1 Az = 3/4 Ao =1/2
30% 932 .943 .947
30 30 20% 930 931 943
10% 924 .936 941
0.0
30% .931 934 953
50 50 20% 927 939 947
10% 929 933 .942
30% 942 .945 .955
30 30 20% 931 1941 .943
0.3 10% .932 .933 .950
' 30% 937 1943 .948
50 50 20% 932 .939 .948
10% 934 938 942
30% 938 942 1949
30 30 20% 941 .946 .952
10% 938 942 .950
0.6
30% 936 1942 .945
50 50 20% 937 945 947
10% 939 942 945
('li) Under subunit randomization
P n Censoring A =1 A2 =3/4 A2 =1/2
30% .952 951 962
30 20% .948 955 .960
10% .943 950 .955
0.0
30% .947 952 958
50 20% 937 945 954
10% .936 944 947
30% 957 963 966
30 20% 959 962 970
0.3 10% .953 .960 961
’ 30% .950 .959 .966
50 20% .953 957 .965
10% 958 .953 960
30% 973 978 973
30 20% .969 977 978
10% 970 970 978
0.6
30% .968 975 977
50 20% 967 .968 980
10% 966 971 975

Twi; = 0.5(U7 + VJZ) /X6, (G = 1,...,mk;), which have marginally exponential distributions with
failure rate Ay and exchangeable structure with correlation coefficient p.

For clustered survival times under unit randomization, we extend Moran’s algorithm (Moran, 1967).
Let (Uit, - - ., Utmy, Uz1, - - ., Usm, ) and (V1. ., Vimy, Va1, - . ., Vam, ) be mutually independent mul-
tivariate normal distribution with marginal means of 1, variances of 1 and correlation coefficients,
Corr(Ugj, , Urjp) = Corr(Vij,, Vis,) = /p1, for j1 # ja and Corr(Uyy,, Uzj,) = Corr(Vij,, Vajn) =
/7. Then for the new random vector (Ths,...,Timy, T21,. - -, Tamy) With Tie; = 0.5(U%; + V&) / Ak,
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Ty; are marginally exponential distributed with failure rate A, and Corr(T%;, T}, ]./) = p for j # j/
and Corr(Tl]-,TZj/) = ps. Here p1 and p> are intracluster correlations between units in the same
group and in different groups, respectively. We generate cluster sizes m; from a discrete uniform
distribution between 2 and 5, and allocate these units randomly into two treatments with equal
probability.

Censoring variables were generated from 7.i.d. uniform distribution U(0, co) with ¢ chosen for 30%
censoring or from U (c1, co+c¢1) with ¢; chosen for 10% or 20% for an exponential survival time with
hazard rate 1. Note that ¢y and ¢; may be regarded as accrual and follow-up periods, respectively,
in a clinical trial with uniform accrual.

We set pand p1 = p2 = 0, 0.3 or 0.6, Ay = 1,A; = 1, 0.5 or 0.75 and the sample size n = 30 or
50. We also set the equal sample sizes n; = n2 = 30 or n1 = np = 50 under cluster randomization.
For each simulation, 5,000 samples of clustered survival data are generated in each set-up. For each
sample, the 95 per cent confidence interval for 7 = 61 /62 was constructed. The empirical coverage
probability was calculated as the proportion of the 5000 confidence intervals covering the true value
T=1.

The simulation results given in Table 4.1 show that the empirical coverage probabilities are close
to the nominal confidence levels overall. There is no significant difference in coverage probability
for various censoring fractions and sample sizes. However, under cluster randomization, coverage
probabilities are shown to be anti-conservative when the hazard ratio is one and correlation is
rather small, while under subunit randomization, coverage probabilities tend to be conservative
when the hazard rate for treatment group is smaller and correlation is large. This trend seems to
be caused by the difference of variations between cluster randomization and subunit randomization.
Investigating the variance estimates from the simulation results, which are not presented in this
paper, the variance estimates under subunit randomization are shown to be larger than those under
cluster randomization in all cases.

5. Discussion

We proposed a method for estimating the confidence interval of the median failure times from
the clustered survival data. Two examples and simulation results were implemented with visual
FORTRAN version 6.1 program. A FORTRAN program for the analysis is available from the
authors.

For clustered survival data, two different types of randomization are considered. One is to randomize
clusters into two groups while the other is to randomize the subunits from each cluster into two
groups. Under cluster randomization, clusters in each treatment are independent while subjects
within cluster are correlated. Under subunit randomization, subunits from each cluster share similar
characteristics, so that correlated units lie in each group as well as across groups.

As shown in the simulation results, the empirical coverage probabilities are more anti-conservative
under the cluster randomization rather than those under the subunit randomization. However,
these is no significant difference from the nominal confidence level overall.
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