• Title/Summary/Keyword: Clove oils

Search Result 33, Processing Time 0.028 seconds

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Effects of Clove Extracts on the Autoxidation and Thermal Oxidation of Soybean Oil (대두유의 자동산화 및 가열산화에 미치는 정향추출물의 항산화 효과)

  • 박상일;손종연
    • Korean journal of food and cookery science
    • /
    • v.20 no.1
    • /
    • pp.81-85
    • /
    • 2004
  • This study was conducted to investigate the antioxidant activities of clove extracts in water, methanol and ether. The clove extracts, BHA and ${\alpha}$-tocopherol were added to each oil at a level of 200 ppm. The activities of the substrate oils and controls were tested under autoxidation and thermal oxidation conditions. The degree of the effects of the antioxidant activities under autoxidation condition were in the following order; ether extract 〉 methanol extract 〉BHA 〉 ${\alpha}$-tocopherol 〉 water extract = control group. The induction periods of the control, water, methanol and ether extracts, and BHA and ${\alpha}$-tocopherol were 9.5, 9.6, 10.7 11.8, 10.4 and 9.7 days, respectively. Under thermal oxidation condition, the methanol extract showed stronger antioxidant activity than those of the water and ether extracts. The antioxidant activity of the methanol extract was attributed to ${\alpha}$-tocopherol and BHA.

Effect of reducing components in spice oils on the nitrite role in model meat systems (육가공 모델 시스템에서 아질산염의 역할에 미치는 향신료 환원성분의 영향)

  • Kim, In-Ho;Lee, Seong-Ki;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.147-153
    • /
    • 1990
  • To investigate the effect of spice oils on the nitrite role in processed meat products, eight spice oils, ascorbic acid, and nitrite at different combinations were added to marcerated pork, and cooked at $70^{\circ}C$ lot 30min or $121^{\circ}C$ for 15min. The cooked sample were stored at $5.5^{\circ}C$ for 12days and pH, residual nitrite, redness, TBA value, and antimicrobial activity were analyzed. pH of the uncooked samples were stable at $5.6{\sim}5.8$ except in samples with nitrite alone, anise, ascorbic acid, and black pepper in which pH increased to $6.7{\sim}7.8$ after 5 days of storage. The pH of the cooked samples were stable at $5.9{\sim}6.1$ during the storage. Residual nitrite decreased rapidly on the first day of storage in each model. Residual nitrite decreased rapidly on the first day of storage in each model. The nitrite reducing effect was greatest in sample with ascorbic acid, followed by clove eugenol and thyme, but was small with peppermint. The redness of the sample was increased with ascorbic acid, colve, eugenol, thyme, anise, black pepper, coriander and rosemary except peppermint, specially samples with ascorbic acid, clove and eugenol were prominent. The TBA values of the samples with cloves, eugenol and ascorbic acid, stored after nine days, were $4{\sim}6.5$ lower than that of nitrite added sample and indicated strong antioxidant activity. The antimicrobial activity determined by inhibition zone, was strong in samples with clove, eugenol, peppermint, thyme, coriander, black pepper, rosemary and anise had antimicrobial activity to the Penicillium sp. Specially with clove, eugenol, peppermint and thyme, while all the samples showed $7{\sim}10mm$ inhibition zone to the Salmonella sp. The above results suggest that addition of eugenol, clove and thyme oil to the processed meat may increased the antioxidant, antimicrobial activity, and redness of the product so that could provide a way of reducing nitrite addition into meat products.

  • PDF

Antifungal Activities of the Essential Oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their Constituents against Various Dermatophytes

  • Park, Mi-Jin;Gwak, Ki-Seob;Yang, In;Choi, Won-Sil;Jo, Hyun-Jin;Chang, Je-Won;Jeung, Eui-Bae;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • This study was carried out in order to investigate the potential of using plant oils derived from Leptospermum petersonii Bailey and Syzygium aromaticum L. Merr. Et Perry as natural antifungal agents. The antifungal effects of essential oils at concentrations of 0.05, 0.1, 0.15, and 0.2 mg/ml on the dermatophytes Microsporum canis (KCTC 6591), Trichophyton mentagrophytes (KCTC 6077), Trichophyton rubrum (KCCM 60443), Epidermophyton floccosum (KCCM 11667), and Microsporum gypseum were evaluated using the agar diffusion method. The major constituents of the active fraction against the dermatophytes were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography analysis. The antifungal activities of S. aromaticum oil (clove oil) against the dermatophytes tested were highest at a concentration of 0.2mg/ml, with an effectiveness of more than 60%. Hyphal growth was completely inhibited in T. mentagrophytes, T. rubrum, and M. gypseum by treatment with clove oil at a concentration of 0.2 mg/ml. Eugenol was the most effective antifungal constituent of clove oil against the dermatophytes T. mentagrophytes and M. canis. Morphological changes in the hyphae of T. mentagrophytes, such as damage to the cell wall and cell membrane and the expansion of the endoplasmic reticulum, after treatment with 0.11 mg/ml eugenol were observed by transmission electron microscopy (TEM). At a concentration of 0.2 mg/ml, L. petersonii oil (LPO) was more than 90% effective against all of the dermatophytes tested, with the exception of T. rubrum. Geranial was determined to be the most active antifungal constituent of L. petersonii oil. Taken together, the results of this study demonstrate that clove and tea tree oils exhibited significant antifungal activities against the dermatophytes tested in this study.

Antibacterial activity of grapefruit seed extract and seven kinds of essential and blended essential oils (Grapefruit seed extract와 7종의 Essential oil 및 혼합 Essential oil의 항균 활성)

  • Yuk, Young Sam
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.198-205
    • /
    • 2021
  • Objectives: Antibiotics help treat Vaginitis, and prolonged usage of antibiotics can lead to resistance. Methods: This study investigates the antimicrobial activity of two types of lactic acid bacteria using essential oils. After cultivation by adding grapefruit seed extract (GSE), eucalyptus, tea tree, clove bud, cinnamon, lemongrass, thyme, and ginger oils in a specific ratio, pathogenic microorganisms, namely E. coli, C. albicans, and lactic acid bacteria were released. The number of bacteria was measured using a medium suitable for the strains. Results: The essential oils and GSE inhibited pathogenic microorganisms, and the inhibitory concentration of GSE against pathogenic bacteria (E. coli, C. albicans) was confirmed. The non-inhibitory mixing ratio was also confirmed (50 μl of eucalyptus globulus (EG) oil and 50 μl of melaleuca alternifolia oil (tea tree oil, TTO) at 200 ppm GSE (pH 5.0, 5.5, 6.0)). Conclusion: Essential oils can be considered as an alternative to antibiotics because of their antibacterial properties. They are useful as auxiliary antibacterial agents for patients under long-term antibiotic treatment.

Antioxidative Effects of Volatile Oil and Oleoresin Extracted from Rosemary, Sage, Clove and Nutmeg (Rosemary, Sage, Clove 및 Nutmeg의 휘발성 및 비휘발성 성분의 항산화성)

  • Lee, Young-Chun;Yoon, Jong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.351-354
    • /
    • 1993
  • This study was designed to investigate the antioxidative effects of volatile oil and oleoresin of rosemary mary (Rosmarinus officinalis Linne), sage (Salvia officinalis Linne), clove (Syzygium aromaticum Merrill) and nutmeg (Myristica fragrans Houttuyn) using the Rancimat and POV test. The antioxidative effects of steam volatile oils of rosemary, sage clove. and nutmeg were not statistically significant, at the levels of 0.01, 0.05, 0.1% added to lard. The antioxidative effects of oleoresin of above 4 spices were increased with the oleoresin concentration. The comparison of the results between Rancimat and POV test of above 4 spices was almost same.

  • PDF

Chemical Pesticides and Plant Essential Oils for Disease Control of Tomato Bacterial Wilt

  • Lee, Young-Hee;Choi, Chang-Won;Kim, Seong-Hwan;Yun, Jae-Gill;Chang, Seog-Won;Kim, Young-Shik;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • Efficacy of different control methods was evaluated for disease management of tomato bacterial wilt caused by $Ralstonia$ $solanacearum$. All six chemical pesticides applied to the bacterial suspension showed $in$ $vitro$ bactericidal activities against $R.$ $solanacearum$. Minimal inhibitory concentrations (MICs) of copper hydroxide (CH), copper hydroxide-oxadixyl mixture (CH+O), and copper oxychloride-dithianon mixture (CO+D) were all 200 ${\mu}g/ml$; MIC of copper oxychloride-kasugamycin (CO+K) mixture was 100 ${\mu}g/ml$; MICs of both streptomycin- validamycin (S+V) and oxine copper-polyoxine B mixture (OC+PB) were 10 ${\mu}g/ml$. Among these chemical pesticides, treatment of the detached tomato leaves with the 5 pesticides (1 mg/ml), except for OC+PB delayed early wilting symptom development caused by the bacterial inoculation ($10^6$ and $10^7$ cfu/ml). Four pesticides, CH, CH+O, CO+K and S+V, showed disease protection in pot analyses. Six plant essential oils, such as cinnamon oil, citral, clove oil, eugenol, geraniol and limonene, differentially showed their antibacterial activities $in$ $vitro$ against $R.$ $solanacearum$ demonstrated by paper disc assay. Among those, cinnamon oil and clove oil exert the most effective activity for protection from the wilt disease caused by the bacterial infection ($10^6$ cfu/ml). Treatment with cinnamon oil and clove oil also suppressed bacterial disease by a higher inoculum concentration ($10^7$ cfu/ml). Clove oil could be used for prevention of bacterial wilt disease of tomato plants without any phytotoxicity. Thus, we suggest that copper compounds, antibiotics and essential oils have potency as a controlling agent of tomato bacterial wilt.

Function of Blending Essential Oil in the Development of Anti-Dandruff Products

  • Yuk, Young Sam
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.171-181
    • /
    • 2022
  • Purpose: In this paper, we show our blending ratio of 10 types of Essential Oils that survives beneficial bacteria and kills harmful bacteria in the scalp, and we investigate the possibility of application of our blending ratio to the development of anti-dandruff products and the possibility of being used as a raw material for clinical beauty and customized cosmetics. Methods: The scalp microorganisms used in our study were M. furfur, S. epidermidis, E. coli, and P. nitroreducens. There are a total of 10 Essential Oils such as True Lavender, Lime, Roman chamomile, Rosemary camphor, Cedarwood, Geranium, Clove, Tea tree, Palmalosa, and Peppermint. The antibacterial test of the blended Essential Oil was carried out according to the test method of the standardized evaluation methodology of "Food and Food Additives Code". Since M. furfur is related to the growth of sebum in the scalp, in this study we used the fnLNB and the fnLNA with 20 ㎖ of whole fat cow milk added. Results: The blending ratio of EO, which inhibits dandruff-causing bacteria such as M. furfur, S. epidermidis, E. coli, and does not inhibit P. nitroreducens showing dominant growth in a healthy scalp, was B8(Clove 0.2%, Roman chamomile 0.5%, Tea tree 0.3%), B9(Geranium 0.1%, Palmarosa 0.1%, Roman chamomile 0.5%, Tea tree 0.3%), B10(Clove 0.1%, Geranium 0.1%, Palmarosa 0.1%, Roman chamomile 0.5%, Tea tree 0.2%). Conclusion: It is thought that the blending ratio of BEO obtained as a result of this study can provide a basis for use as an alternative to antibiotics in developing anti-dandruff drugs and emerge as a new alternative to solve scalp microbial imbalance. In order for EO to be used as a useful raw material for anti-dandruff preparation, researches on 1) Standardization (the effects of products differ according to the types, regions, climate, extraction methods, etc.), 2) Antimicrobial effects, 3) Safety, etc., must be established.

Volatile Components of Essential Oils from Spices and It's Inhibitory Effects against Biofilm Formed by Food Poisoning Bacteria (향신료 정유의 휘발성 성분 및 식중독 세균에 의해 형성된 biofilm 억제 효과)

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.285-295
    • /
    • 2022
  • The ability of volatile components of essential oils (EO) from cinnamon, clove, and lemongrass to inhibit biofilms formed on polyethylene and stainless steel by six types of food poisoning bacteria was investigated. The main components of cinnamon EO were identified as cinnamaldehyde (38.30%), linalool (9.61%), β-caryophyllene (8.90%), and 1,3,4-eugenol (8.19%). 1,3,4-Eugenol (61.84%) was the dominant component of clove EO. The major component of lemongrass EO was citral. Citral is a natural mixture of two isomeric acyclic monoterpene aldehydes: geranial (trans-citral, 19.11%) and neral (cis-citral, 19.23%). Among these major compounds, cinnamaldehyde, linalool, eugenol, and citral exhibited comparatively strong antimicrobial activity in the disc diffusion assay. Treatments with 0.1% eugenol and citral were highly effective on biofilm inhibition on both tested surfaces. Cinnamaldehyde (0.1%) was effective against biofilm formation by Listeria monocytogenes ATCC 19112 and Staphylococcus aureus KCCM 11812. These results suggested the potential of cinnamaldehyde, eugenol, and citral treatments in inhibiting the formation of biofilms by food poisoning bacteria.

Chemical Composition and Antifungal Activity of Plant Essential Oils against Malassezia furfur (비듬균(Malassezia furfur)에 대한 식물 오일들의 항균활성 및 활성오일의 성분 분석)

  • Lee, Jeong-Hyun;Lee, Jae-Sug
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.315-321
    • /
    • 2010
  • Malassezia furfur is an important causal factor for seborrheic dermatitis. Nowadays, the drugs available to treat this fungal infection are few. Several studies have documented the biological activity of essential oils. However, its antifungal properties are not completely understood, especially its anti-Malassezia activity. The aim of this study were to evaluate the effect of the plant essential oils on the growth of M. furfur using disk diffusion method and analyze by Gas chromatography-mass spectrometry (GC-MS) most active essential oils. In first screening, the 17 plant essential oils have possesses inhibitory activity against M. furfur at 2 mg/mL. Among the plant essential oils, oil of Citrus auranifoli was most active against M. furfur and its activity showed dose dependency. This anti-malassezial activity was high than that of itraconazole at 2 mg/mL. Oil of Citrus auranifolia also was phytochemically examined by GC-MS analysis, its main constituents were identified as limonene, ${\gamma}$-terpinene and terpinolene. It can be concluded that essential oils of Citrus auranifolia may have interesting applications to control fungal-derived diseases.