DOI QR코드

DOI QR Code

Volatile Components of Essential Oils from Spices and It's Inhibitory Effects against Biofilm Formed by Food Poisoning Bacteria

향신료 정유의 휘발성 성분 및 식중독 세균에 의해 형성된 biofilm 억제 효과

  • Kim, Hyeong-Eun (Sauce Industrialization Center, The Food Industry Promotional Agency of Korea) ;
  • Kim, Yong-Suk (Department of Food Science and Technology, Jeonbuk National University)
  • Received : 2022.07.01
  • Accepted : 2022.07.18
  • Published : 2022.08.30

Abstract

The ability of volatile components of essential oils (EO) from cinnamon, clove, and lemongrass to inhibit biofilms formed on polyethylene and stainless steel by six types of food poisoning bacteria was investigated. The main components of cinnamon EO were identified as cinnamaldehyde (38.30%), linalool (9.61%), β-caryophyllene (8.90%), and 1,3,4-eugenol (8.19%). 1,3,4-Eugenol (61.84%) was the dominant component of clove EO. The major component of lemongrass EO was citral. Citral is a natural mixture of two isomeric acyclic monoterpene aldehydes: geranial (trans-citral, 19.11%) and neral (cis-citral, 19.23%). Among these major compounds, cinnamaldehyde, linalool, eugenol, and citral exhibited comparatively strong antimicrobial activity in the disc diffusion assay. Treatments with 0.1% eugenol and citral were highly effective on biofilm inhibition on both tested surfaces. Cinnamaldehyde (0.1%) was effective against biofilm formation by Listeria monocytogenes ATCC 19112 and Staphylococcus aureus KCCM 11812. These results suggested the potential of cinnamaldehyde, eugenol, and citral treatments in inhibiting the formation of biofilms by food poisoning bacteria.

식중독 세균에 의한 biofilm 형성을 억제하는 효과를 시험하기 위하여 cinnamon, clove 및 lemongrass 정유의 휘발성 성분을 분석하였다. 또한 정유의 주요 항균활성 성분이 polyethylene과 stainless steel 표면에서 식중독 세균에 의한 biofilm 형성을 억제하는 효과에 대하여 조사하였다. Cinnamon 정유의 주요 휘발성 성분은 cinnamaldehyde (38.30%), linalool (9.61%), β-caryophyllene (8.90%) 및 1,3,4-eugenol (8.19%)로 동정되었다. Clove 정유의 주요 휘발성 성분은 1,3,4-eugenol (61.84%)로 분석되었다. Lemongrass의 주요 휘발성 성분은 citral의 이성질체인 geranial (19.11%)과 neral (19.23%)로 검출되었으며, citral은 isomeric acyclic monoterpene aldehydes로서 geranial (trans-citral, 19.11%)과 neral (cis-citral, 19.23%)의 혼합물로 분석되었다. Cinnamon, clove 및 lemongrass의 주요 성분 중 cinnamaldehyde, linalool, eugenol 및 citral이 disc diffusion assay에 의해 시험한 6종의 식중독 세균에 대하여 강한 항균활성을 나타냈다. Eugenol (0.1%)과 citral은 polyethylene 및 stainless steel coupon 표면에서 식중독 세균에 의해 형성된 biofilm에 대하여 강한 억제 작용을 나타났다. Cinnamaldehyde (0.1%)는 Listeria monocytogenes ATCC 19112와 Staphylococcus aureus KCCM 11812에 의해 형성된 biofilm에 대해 장한 억제 작용을 나타냈다. 연구 결과 cinnamaldehyde, eugenol 및 citral 처리에 의해 식중독 세균에 의한 biofilm 형성을 억제가 가능할 것으로 판단된다.

Keywords

References

  1. Yun, H.J., Kho, Y.L., Na, S.S., Lee, Y.W., Studies on growth and decontamination of Listeria monocytogenes attached to food contact surface materials. Korean J. Environ. Health Soc., 27, 75-82 (2001).
  2. Xu, H., Zou, Y.Y., Lee, H.Y., Ahn, J.H., Effect of NaCl on the biofilm formation by foodborne pathogens. J. Food Sci., 75, 580-585 (2010).
  3. Choi, Y.W., Lee, H.W., Kim, S.M., Lee, J.C., Lee, Y.C., Seol, S.Y., Cho, D.T., Kim, J.M., Biofilm forming ability and production of curli and cellulose in clinical isolates of Enterobacteriaceae. Korean J. Microbiol., 47, 335-341 (2011).
  4. Jahid, I.K., Ha, S.D., A review of microbial biofilms of produce: Future challenge to food safety. Food Sci. Biotechnol., 21, 299-316 (2012). https://doi.org/10.1007/s10068-012-0041-1
  5. Zottola, E.A., Sasahara, K.C., Microbial biofilms in the food processing industry-should they be a concern? Int. J. Food Microbiol., 23, 125-148 (1994). https://doi.org/10.1016/0168-1605(94)90047-7
  6. Tarver, T., Biofilms a threat to food safety. Food Technol., 63, 46-48 (2009).
  7. Baick, S.C., Chung, W.H., Microbial biofilm in dairy processing environments. J. Anim. Sci. Technol., 42, 203-214 (2000).
  8. Fortino, S.S., Maria, G.M.N., Essential oils from aromatic herbs as antimicrobial agents. Curr. Opinion in Biotechnol., 23, 136-141 (2012). https://doi.org/10.1016/j.copbio.2011.08.005
  9. Kim, Y.S., Shin, D.H., Volatile constituents from the leaves of Callicarpa japonica thumb. and their antibacterial activities. J. Agric. Food Chem., 52, 781-787 (2004). https://doi.org/10.1021/jf034936d
  10. Kim, Y.S., Hwang, C.S., Shin, D.H., Volatile constituents from the leaves of Polygonum cuspidatum S. et Z. and their anti-bacterial activities. Food Microbiol., 22, 139-144 (2005). https://doi.org/10.1016/j.fm.2004.01.016
  11. Kim, Y.S., Shin, D.H., Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts. Food Microbiol., 22, 37-45 (2005). https://doi.org/10.1016/j.fm.2004.05.002
  12. Kim, H.E., Kim, Y.S., Biofilm formation characteristics of major foodborne pathogens on polyethylene and stainless steel surfaces. J. Food Hyg. Saf., 35, 195-204 (2020). https://doi.org/10.13103/JFHS.2020.35.2.195
  13. Furletti, V.F., Texixerira, I.P., Pereda, O., Mardegan, R.C., Sartoratto, A., Figueira, G.M., Duarte, R.M.T., Rehder, V.L.G., Duarte, M.C.T., Hofling, J.F., Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation. Evid. Based Complem. Alter. Med., Article ID 985832, 1-9 (2011).
  14. Ahmad, K.M.S., Ahmad, I., Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharm., 140, 416-423 (2012). https://doi.org/10.1016/j.jep.2012.01.045
  15. Taweechaisupapong, S., Aieamsarrd, J., Chitropas, P., Khunkitti, W., Inhibitory effect of lemongrass oil and its major constituents on Candida biofilm and germ tube formation. South African J. Botany, 81, 95-102 (2012). https://doi.org/10.1016/j.sajb.2012.06.003
  16. Lee, K.H., Kim, B.S., Keum, K.S., Yu, H.H., Kim, Y.H., Chang, B.S., Ra, J.Y., Moon, H.D., Choi, N.Y., You, Y.O., Essential oil of Curcuma longa inhibits Streptoococcus mutans biofilm formation. J. Food Sci., 76, 226-230 (2011).
  17. Szczepanski, S., Lipski, A., Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Cont., 36, 224-229 (2014). https://doi.org/10.1016/j.foodcont.2013.08.023
  18. Kim, H.E., Kim, Y.S., Inhibitory effects of cinnamon, clove and lemongrass essential oils against biofilm formation by food poisoning bacteria. J. Food Hyg. Saf., 36, 430-439 (2020). https://doi.org/10.13103/JFHS.2021.36.5.430
  19. Lou, Z., Liu, Y., Hong, Y., Song, X., Wang, H., Ai, L., Anti-biofilm activities and chemical composition of essential oil from burdock leaf. Food Sci. Res., 19, 915-921 (2013). https://doi.org/10.3136/fstr.19.915
  20. Jadhav, S., Shah, R., Bhave, M., Palombo, E.A., Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Cont., 29, 125-130 (2013). https://doi.org/10.1016/j.foodcont.2012.05.071
  21. Schillaci, D., Napoli, E.M., Cusimano, M.G., Vitale, M., Ruberto, G., Origanum vulgare subsp. hirtum essential oil prevented biofilm formation and showed antibacterial activity against planktonic and sessile bacterial cells. J. Food Protect., 76, 1747-1752 (2013). https://doi.org/10.4315/0362-028X.JFP-13-001
  22. Sieniawska, E., Los, R., Baj, T., Malm, A., Glowniak, K., Antimicrobial efficacy of Mutellina purpurea essential oil and α-pinene against Staphylococcus epidermidis grown in planktonic and biofilm cultures. Ind. Crop Prod., 51, 152-157 (2013). https://doi.org/10.1016/j.indcrop.2013.09.001
  23. Budzynska, A., Szakiel, M.W., Sadowska, B., Kalemba, D., Rozalska, B.. Antibiofilm activity of selected plant essential oils and their major components. Polish J. Microbiol., 60, 35-41 (2011). https://doi.org/10.33073/pjm-2011-005
  24. Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M., Antibiotic sensitivity testing by a standardized single disk method. Am. J. Clin. Pathol., 45, 493-496 (1966). https://doi.org/10.1093/ajcp/45.4_ts.493
  25. Andrews, J.M., Determination of minimum inhibitory concentrations. J. Antimicrobial Chemoth., 48, 5-16 (2001). https://doi.org/10.1093/jac/48.suppl_1.5
  26. Monil, A.D., Kamlesh, A.S., Ramarkrishna, N.P., Schilling, M.W., Juan, L.S., Production of Listeria monocytogenes biofilms on stainless steel and polystyrene surface by essential oils. J. Food Protect., 75, 1332-1337 (2012). https://doi.org/10.4315/0362-028X.JFP-11-517
  27. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1990).
  28. El-Baroty, G.S., Abd El-Baky, H.H., Farag, R.S., Saleh, M.A., Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. African J. Biochem. Res., 4, 167-174 (2010).
  29. Sara, B., Essential oil: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol., 94, 223-253 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  30. Valgimigli, L., Essential oils as natural food additives: Composition, applications, antioxidant and antimicrobial properties. Adv. Food Saf. Food Microbiol., 153-172 (2012).
  31. Srivastava, A.K., Srivastava, S.K., Syamsundar, K.V., Bud and leaf essential oil composition of Syzygium aromaticum from India and Madagascar. Flavour Fragr. J., 20, 51-53 (2005). https://doi.org/10.1002/ffj.1364
  32. Ito, M., Murakami, K., Yoshino, M., Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food Chem. Toxicol., 43, 461-466 (2005). https://doi.org/10.1016/j.fct.2004.11.019
  33. Oztuurk, A., Ozbek, H., The anti-inflammatory activity of eugenia caryophyllata essential oil: an animal model of anti-inflammatory activity. Eur. J. Gen. Med., 2, 159-163 (2005).
  34. Kaur, G., Athar, M., Alam, M., Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol. Carcinog., 49, 290-301 (2010). https://doi.org/10.1002/mc.20601
  35. Wang, C., Zhang, J., Chen, J., Fan, Y., Shi, Z., Antifungal activity of eugenol against Botrytis cinerea. Trop. Plant Pathol., 35, 137-143 (2010).
  36. Kim, S.H., Shin, T.Y., Kim, H.Y., Lee, Y.M., Lee, E.H., Shin, B.K., Kim, Y.C., An, N.H., Kim, H.M., Inhibition of immediate allergic reaction by eugenol. Yakhak Hoeji, 40, 679-683 (1996).
  37. Somolinos, M., Garcia, D., Condon, S., Mackey, B., Pagan, P., Inactivation of Escherichia coli by citral. J. Applied Microbiol., 108, 1928-1939 (2009).
  38. Vavid, C., Mohamed, A.A., Eduard, B., Baruch, R., Natib, D., Einat, S., Microtubules are an intracellular target of the plant terpene citral. The Plant J., 61, 399-408 (2010). https://doi.org/10.1111/j.1365-313X.2009.04063.x
  39. Cristiana, B.S., Silvia, S.G., Vanessa, W., Elfrides, E.S.S., Antifungal activity of the lemongrass oil and citral against Candida spp. The Brazilian J. Infect. Dis., 12, 63-66 (2008).
  40. Prabuseenivasan, S., Jayakumar, M., Ignacimuthu, S., In vitro antibacterial activity of some plant essential oil. BMC Complem. Altern. Med., 6, 10.1186/1472-6882-6-39 (2006).
  41. Khan, M.S.A., Ahmad, I., Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrobial Chemother., 67, 618-621 (2012). https://doi.org/10.1093/jac/dkr512