• Title/Summary/Keyword: Clouds

Search Result 1,002, Processing Time 0.025 seconds

MAGNETIC FIELDS IN BRIGHT-RIMMED CLOUDS AND COMETARY GLOBULES TRACED USING R-BAND POLARIZATION OBSERVATIONS

  • SOAM, ARCHANA;GOPINATHAN, MAHESWAR;LEE, CHANG WON;BHATT, HRISH
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.87-88
    • /
    • 2015
  • We present results of our R-band polarimetry of a bright-rimmed cloud, IC1396A (with BRC 36), associated with the H II region S131 and the cometary globule LDN 1616 to study their magnetic field geometry. The distances of these clouds have been reported to be ~ 750 pc and ~ 450 pc, respectively in the literature. The young open cluster Trumpler 37 in the vicinity of IC1396A and the high mass stars in the Orion belt near L1616 are found to be responsible for the structure of these clouds. We made polarimetry of foreground stars inferred from their distances measured by the Hipparcos satellite to subtract the foreground contribution to the observed polarization results. We discuss the optical polarimetric results and compare our findings with MHD simulations towards BRCs and CGs.

A Two-Phase Approach of Progressive Mesh Reconstruction from Unorganized Point Clouds

  • Zhang, Hongxin;Liu, Hua;Hua, Wei;Bao, Hujun
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating local surface orientation, we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated based on them by space carving techniques. The resultant mesh is progressively refined by local mesh refinement and optimization according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained. Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We show that the proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance input data.

Topology Optimization Through Material Cloud Method (재료조각법을 이용한 위상최적설계)

  • Chang Su-Young;Youn Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.22-29
    • /
    • 2005
  • A material cloud method, which is a new topology optimization method, is presented. In MCM, an optimal structure can be found out by manipulating sizes and positions of material clouds, which are lumps of material with specified properties. A numerical analysis for a specific distribution of material clouds is carried out using fixed background finite element mesh. Optimal material distribution can be element-wisely extracted from material clouds' distribution. In MCM, an expansion-reduction procedure of design domain for finding out better optimal solution can be naturally realized. Also the convergence of material distribution is faster and well-defined material distribution with fewer intermediate densities can be obtained. In addition, the control of minimum-member sizes in the material distribution can be realized to some extent. In this paper, basic concept of MCM is introduced, and formulation and optimization results of MCM are compared with those of the traditional density distribution method(DDM).

Automatic wall slant angle map generation using 3D point clouds

  • Kim, Jeongyun;Yun, Seungsang;Jung, Minwoo;Kim, Ayoung;Cho, Younggun
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.594-602
    • /
    • 2021
  • Recently, quantitative and repetitive inspections of the old urban area were conducted because many structures exceed their designed lifetime. The health of a building can be validated from the condition of the outer wall, while the slant angle of the wall widely serves as an indicator of urban regeneration projects. Mostly, the inspector directly measures the inclination of the wall or partially uses 3D point measurements using a static light detection and ranging (LiDAR). These approaches are costly, time-consuming, and only limited space can be measured. Therefore, we propose a mobile mapping system and automatic slant map generation algorithm, configured to capture urban environments online. Additionally, we use the LiDAR-inertial mapping algorithm to construct raw point clouds with gravity information. The proposed method extracts walls from raw point clouds and measures the slant angle of walls accurately. The generated slant angle map is evaluated in indoor and outdoor environments, and the accuracy is compared with real tiltmeter measurements.

3D Point Cloud Enhancement based on Generative Adversarial Network (생성적 적대 신경망 기반 3차원 포인트 클라우드 향상 기법)

  • Moon, HyungDo;Kang, Hoonjong;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1452-1455
    • /
    • 2021
  • Recently, point clouds are generated by capturing real space in 3D, and it is actively applied and serviced for performances, exhibitions, education, and training. These point cloud data require post-correction work to be used in virtual environments due to errors caused by the capture environment with sensors and cameras. In this paper, we propose an enhancement technique for 3D point cloud data by applying generative adversarial network(GAN). Thus, we performed an approach to regenerate point clouds as an input of GAN. Through our method presented in this paper, point clouds with a lot of noise is configured in the same shape as the real object and environment, enabling precise interaction with the reconstructed content.

V-PCC based Color Attributes Compression for Plenoptic Point Clouds (V-PCC 기반 플렌옵틱 포인트 클라우드의 색상 속성 정보 부호화 방법)

  • Hahyun Lee;Jungwon Kang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.109-111
    • /
    • 2022
  • 일반적인 포인트 클라우드(Point Clouds)는 3 차원 공간상의 포인트가 한 개의 색상 정보만을 포함하고 있는 반면에 플렌옵틱 포인트 클라우드(Plenoptic Point Clouds)는 사실감을 향상시키기 위해 한 개의 포인트가 여러 시점에서 촬영된 색상 정보들을 모두 포함하고 있는 새로운 방식의 볼륨 메트릭 데이터 표현 방식이다. 하지만, 일반적인 포인트 클라우드에 비해 더 많은 색상 정보를 필요로 하기 때문에 효율적인 압축이 필수적이다. 따라서, 본 논문에서는 비디오 기반 포인트 클라우드 압축 표준 기술인 V-PCC 를 기반으로 플렌옵틱 포인트 클라우드의 색상 속성간 중복성 제거를 통해 효율적으로 색상 정보를 압축할 수 있는 방법을 제안한다. 실험 결과 제안 방법은 다중 플렌옵틱 색상 속성 정보를 독립적으로 부호화 경우에 비해 상당한 성능 향상이 있음을 보여준다.

  • PDF

Studies of LSB Features with K-DRIFT: Galactic Cirrus Clouds and Extragalactic Objects

  • Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.56.4-57
    • /
    • 2021
  • The low surface brightness (LSB) universe has been largely unexplored. The LSB structures are extremely difficult to image due to systematic errors of sky subtraction and scattered light in he atmosphere and in the telescope. Among the systematic errors of sky subtraction, the widespread presence of Galactic cirrus clouds is one of the major obstacles in studying the LSB features of extragalactic sources. Interstellar dust clouds are also fundamental to understand many issues in the Milky Way. Therefore, understanding the Galactic cirri is a crucial topic in the LSB studies. We present the ubiquitousness and current understanding of the Galactic cirri. We also discuss what is necessary to study the LSB features with K-DRIFT and what we can learn from the K-DRIFT observations.

  • PDF

DENSE MOLECULAR CLOUDS IN THE GALACTIC CENTER REGION II. H13CN (J=1-0) DATA AND PHYSICAL PROPERTIES OF THE CLOUDS

  • Lee, Chang-Won;Lee, Hyung-Mok
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.4
    • /
    • pp.271-282
    • /
    • 2003
  • We present results of a $H^{13}CN$ J=1-0 mapping survey of molecular clouds toward the Galactic Center (GC) region of $-1.6^{\circ}{\le}{\iota}{\le}2^{\circ}$ and $-0.23^{\circ}{\le}b{\le}0.30^{\circ}$ with 2' grid resolution. The $H^{13}CN$ emissions show similar distribution and velocity structures to those of the $H^{12}CN$ emissions, but are found to better trace the feature saturated with $H^{12}CN$ (1-0). The bright components among multi-components of $H^{12}CN$ line profiles usually appear in the $H^{13}CN$ line while most of the dynamically forbidden, weak $H^{12}CN$ components are seldom detected in the $H^{13}CN$ line. We also present results of other complementary observations in $^{12}CO$ (J=1-0) and $^{13}CO$ (J=1-0) lines to estimate physical quantities of the GC clouds, such as fractional abundance of HCN isotopes and mass of the GC cloud complexes. We confirm that the GC has very rich chemistry. The overall fractional abundance of $H^{12}CN$ and $H^{13}CN$ relative to $H_2$ in the GC region is found to be significantly higher than those of any other regions, such as star forming region and dark cloud. Especially cloud complexes nearer to the GC tend to have various higher abundance of HCN. Total mass of the HCN molecular clouds within $[{\iota}]{\le}6^{\circ}$ is estimated to be ${\~}2 {\times}10^7\;M_{\bigodot}$ using the abundances of HCN isotopes, which is fairly consistent with previous other estimates. Masses of four main complexes in the GC range from a few $10^5$ to ${\~}10^7\;M_{\bigodot}$ All the HCN spectra with multi-components for the four main cloud complexes were investigated to compare the line widths of the complexes. The largest mode (45 km $s^{-1}$) of the FWHM distributions among the complexes is in the Clump 2. The value of the mode tends to be smaller at the farther complexes from the GC.

Numerical Simulation of Spatiotemporal Distribution of Chaff Clouds for Warship Defense using CFD-DEM Coupling (CFD-DEM 연동을 통한 함정용 채프운의 시공간 분포 해석)

  • Uk Jin Jung;Moonhong Kim;Dongwoo Sohn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.93-103
    • /
    • 2023
  • Warships widely spread numerous chaffs using a blast, which form chaff clouds that create false radar cross-sections to deceive enemy radars. In this study, we established a numerical framework based on a one-way coupling of computational fluid dynamics and discrete element method to simulate the spatiotemporal distribution of chaff clouds for warships in the air. Using the framework, we investigated the effects of wind, initial chaff cartridge angle, and blast pressure on the distribution of chaff clouds. We observed three phases for the chaff cloud diffusion: radial diffusion by the explosion, omnidirectional diffusion by turbulence and collision, and gravity-induced diffusion by the difference in the fall speed. The wind moved the average position of the chaff clouds, and the diffusion due to drag force did not occur. The direction of radial diffusion by the explosion depended on the initial angle of the cartridge, and a more vertical angle led to a wider distribution of the chaffs. As the blast pressure increased, the chaff clouds spread out more widely, but the distribution difference in the direction of gravity was not significant.

CO Observations of H II Regions Sh 254-258

  • Jung, Dong-Kyu;Kim, Kwang-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2015
  • The molecular clouds associated with bright optical HII regions Sh 254-258 are studied with the TRAO CO observations and with the WISE near-infrared emission. Based on the morphology of the clouds and the basic physical parameters derived with the LTE analysis, Pieces of evidences for physical interactions with its surroundings are investigated.

  • PDF