• 제목/요약/키워드: Cloud radiative forcing

검색결과 11건 처리시간 0.034초

경년과 계절 시간 규모하에서 해수면 온도에 대한 구름복사 강제력의 지역 의존도 (The Regional Dependency of Cloud-radiative Forcing on the Sea Surface Temperature in the Interannual and Seasonal Time Scales)

  • 이우섭;곽종흠;소선섭;서명석;김맹기
    • 한국지구과학회지
    • /
    • 제24권6호
    • /
    • pp.558-567
    • /
    • 2003
  • 해수면 온도에 대한 구름복사 강제력의 지역 의존도가 조사되었다. 이 조사는 경년 변동과 계절 시간규모에 대해서 각각 조사되었다. 적도 동태평양에서 경년 변동의 경우 해수면 온도가 1$^{\circ}$C 증가할 때 순 구름복사 강제력은 약 3Wm$^{-2}$가 증가하였으며, 계절변동이 포함된 경우 약 3.5Wm$^{-2}$가 증가하는 것으로 나타났다. 반면 열대 해양전체에서 경년 변동의 경우 해수면 온도가 1$^{\circ}$C 증가할 때 순 구름복사 강제력은 1.5Wm$^{-2}$ 감소하였으나, 계절변동이 포함된 경우 약 2.9Wm$^{-2}$로 증가하였다. 따라서 해수면 온도에 대한 구름복사 강제력의 의존도는 적도 동태평양에서 열대 해양으로 넓어질수록 경년 변동에 의해 영향에서 계절변동에 의한 영향이 더 지배적으로 작용한다. 계절 변동이 포함된 경우 해역에 관계없이 해수면온도가 1$^{\circ}$C 증가할 때, 순 구름복사 강제력은 약 2${\sim}$3Wm$^{-2}$ 증가하였다. 이러한 결과는 해수면 온도의 경년 변동이 뚜렷한 적도 동태평양에서는 경년 변동에 의한 구름복사 강제력이 대기를 가열하는 반면, 열대 해양 전체에서는 계절변동에 의한 구름복사 강제력이 대기를 가열한다는 것을 의미한다.

구름-장파복사 상호작용이 아시아 몬순에 미치는 영향 (The Impact of Interaction between Cloud and Longwave Radiation on the Asian Monsoon Circulation)

  • 유근혁;손병주
    • 한국지구과학회지
    • /
    • 제30권1호
    • /
    • pp.58-68
    • /
    • 2009
  • 몬순 기간에 구름의 복사 강제력의 영향을 파악하기 위하여 1998년 4월부터 9월까지 International Satellite Cloud Climatology Project (ISCCP) 구름자료와 GEWEX Asian Monsoon Experiment (GAME) 재분석 자료를 입력 자료로 복사 모델을 수행하여 3차원의 장파 복사 플럭스를 구하였다. 구름에 의한 대기 복사 가열은 구름을 포함한 평균 대기와 맑은 대기에서의 복사 가열율의 차이를 이용하여 계산하였다 구름에 의한 복사 가열율이 아시아 몬순에 미치는 영향을 중점적으로 살펴보았다. 구름에 의한 복사 가열은 인도양에서 최대를 티벳 고원에서 최소를 나타내어, 남북으로 차등 가열의 경도를 나타내었다. 이러한 차등 가열이 대기 순환의 최대 원인임을 고려해볼 때, 인도양과 티벳 고원에서의 구름에 의한 차등 가열의 경도는 해들리 타입의 남북 몬순 순환을 강화시키고 있다. 또한 운정에서의 가열, 운저에서의 냉각의 형태로 나타나는 구름의 복사 가열 분포는, 대기의 불안정성을 높여서 몬순 순환을 증대시킬 수 있는 역할을 하고 있다.

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

Aerosol radiative forcing estimated from ground-based sky radiation measurements over East Asia

  • Kim, Do-Hyeong;Sohn, B.J.;Nakajima, T.;Okada, I.;Takamura, T.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.12-16
    • /
    • 2002
  • The clear sky radiative forcings of aerosols were evaluated over East Asia. We first investigated optical characteristics of aerosol using sky radiation measurements. An algorithm of Nakajima et al. (1996) is used for retrieving aerosol parameters such as optical thickness, ${\AA}$ngstr$\"{O}$m exponent, single scattering albedo, and size distribution from sky-radiation measurements, which then can be used for examining spatial and temporal variations of aerosol. Obtaining aerosol radiative forcing at TOA and surface, a radiative transfer model is used with inputs of obtained aerosol parameters and GMS-5 satellite-based cloud optical properties. Results show that there is a good agreement of simulated downwelling radiative flux at the surface with observation within 10 W m$^{-2}$ rms errors under the clear sky condition. However, a relatively large difference up to 40 W m$^{-2}$ rms error is found under the cloudy sky condition. The computed aerosol radiative forcing at the surface shows downward flux changes ranging from -100 to -170 W m$^{-2}$ per unit aerosol optical thickness at 0.7 $\mu$m. The different values of aerosol radiative forcing among the stations is mainly due to the differences in single scattering albedo ($\omega$$_{0.7}$) and asymmetric parameter (g$_1$) related to the geographical and seasonal variations.

  • PDF

지표 에너지 수지에 미치는 구름의 복사 역할 (Radiative Role of Clouds on the Earth Surface Energy Balance)

  • 홍성철;정일웅;김형진;이재범;오성남
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

지상원격탐사를 이용한 에어러솔 간접효과 연구 (Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings)

  • 김병곤;권태영
    • 한국대기환경학회지
    • /
    • 제22권2호
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

열대 해양의 해수면온도와 구름의 상호관계 (Interrelationships between Sea Surface Temperatures and Clouds over the Tropical Oceans)

  • 송봉근;김영섭;박경원
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
    • /
    • pp.92-97
    • /
    • 2001
  • The intra-annual and interannual variations of total, high, middle, low clouds, and cloud forcing net solar radiation flux, cloud forcing net long-wave radiation flux, and SSTs over the tropical oceans are investigated with the use of ISCP D2, NCEP/NCAR Reanalysis for January 1983-December 1993. The intra-annual variation of total cloudiness is dominated by high and middle clouds in the western Pacific and central tropical oceans, the interannual variation of total cloudiness is also dominated by high and middle clouds in the central Pacific and Atlantic. The dominant intra-annual and interannual EOFs of total cloudiness have spatially coherent link with those SSTs. For the interannual EOFs, total cloudiness and SSTs are related to E1 nino-Southern Oscillation(ENSO). The second most important intra-annual EOFs of total cloudiness are related to Inter Tropical Convergence Zone(ITCZ). The third most important intra-annual EOFs show coherent relation in the western Pacific. The correlation analysis between cloud radiative effects and SSTs show spatially coherent relation over the tropical oceans even though cloud forcing cooling effect is much higher than heating effect.

  • PDF

라이다 시스템을 이용한 ice-crystal cloud의 광학적 특성 관측 및 복사 전달 모델을 통한 복사강제력 산출 (Measurement of Optical Properties of Ice-crystal Cloud using LIDAR System and Retrieval of Its Radiative Forcing by Radiative Transfer Model)

  • 노영민;신동호;이경화;;김영준
    • 한국대기환경학회지
    • /
    • 제25권5호
    • /
    • pp.392-401
    • /
    • 2009
  • Ice-crystal clouds observation was conducted using a GIST/ADEMRC Multi-wavelength Raman lidar system in order to measure vertical profile and optical depth at Gwangju ($35^{\circ}$10'N, $126^{\circ}$53'E), Korea in December 2002, and March and April 2003. Ice-crystal clouds at high altitude can be distinguished from atmospheric aerosols by high depolarization ratio and high altitude. Ice-crystal clouds were observed at 5~12 km altitudes with a high depolarization ratio from 0.2 to 0.5. Optical depth of ice-crystal clouds had varied from 0.14 to 1.81. The radiative effect of observed ice-crystal cloud on climate system was estimated to be negative net flux in short wavelength (0.25~$4.0{\mu}m$) and positive net flux in short+long wavelength (0.25~$100{\mu}m$) at top of the atmosphere. Net flux by ice-crys tal cloud per unit optical depth was comparable to that of Asian dust.

수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정 (Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors)

  • 이권호
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.159-171
    • /
    • 2012
  • Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).

우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점 (Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy)

  • 김지영;장근일
    • 대기
    • /
    • 제27권4호
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.