• Title/Summary/Keyword: Cloud radiative forcing

Search Result 11, Processing Time 0.029 seconds

The Regional Dependency of Cloud-radiative Forcing on the Sea Surface Temperature in the Interannual and Seasonal Time Scales (경년과 계절 시간 규모하에서 해수면 온도에 대한 구름복사 강제력의 지역 의존도)

  • Lee, Woo-Seop;Kwak, Chong-Heum;So, Seon-Sup;Suh, Myoung-Seok;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.558-567
    • /
    • 2003
  • The regional dependency of cloud-radiative forcing at the top of atmosphere is studied using ERBE (Earth Radiation Budget Experiment), ISCCP (International Satellite Cloud Climatology Project) and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data for 60 months from January 1985 to December 1989 over tropical ocean. In the interannual time scale, the dependency of cloud-radiative forcing on the sea surface temperature over the equatorial eastern Pacific ocean is about 7.4Wm$^{-2}$K$^{-1}$ for longwave radiation and about -4.4Wm$^{-2}$K$^{-1}$ for shortwave radiation, respectively. This shows that the net cloud-radiative forcing due to the increase of sea surface temperature over the equatorial eastern Pacific ocean heats the atmosphere. But the dependency is reversed over tropical oceans with -3.4Wm$^{-2}$K$^{-1}$ for longwave and 1.9WmWm$^{-2}$K$^{-1}$ for shortwave radiation, indicating that the net cloud-radiative forcing cools the atmosphere over tropical oceans. In raw data including seasonal cycle, the dependency of cloud-radiative forcing over the equatorial eastern Pacific ocean is very similar to that in interannual time scale in both the magnitude and the sign. But the dependency of cloud-radiative forcing on the sea surface temperature over tropical oceans is about 0.2Wm$^{-2}$K$^{-1}$ for longwave and 2.7Wm$^{-2}$K$^{-1}$ for shortwave radiation, respectively. These results represent that the role of seasonal cycle on the cloud radiative forcing is gradually more important than role of interannual time scale as the ocean area is broadening from the tropical central Pacific to the tropical ocean.

The Impact of Interaction between Cloud and Longwave Radiation on the Asian Monsoon Circulation (구름-장파복사 상호작용이 아시아 몬순에 미치는 영향)

  • Ryu, Geun-Hyeok;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Three-dimensional distributions of longwave radiation flux for the April-September 1998 period are generated from radiative transfer calculations using the GEWEX Asian Monsoon Experiment (GAME) reanalysis temperature and humidity profiles and International Satellite Cloud Climatology Project (ISCCP) cloudiness as inputs to understand the effect of cloud radiative forcing in the monsoon season. By subtracting the heating of the clear atmosphere from the cloudy radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the Asian monsoon. Cloud-induced heating exhibits its maximum heating areas within the Indian Ocean and minimum heating over the Tibetan Plateau, which establishes the north-south oriented differential heating gradient. Considering that the differential heating is a ultimate source generating the atmospheric circulation, the cloud-induced heating gradient established between the Indian Ocean and the Plateau can enhance the strength of the north-south Hadley-type monsoon circulation. Cooling at cloud top and warming at cloud bottom, which are the vertical distributions of cloud-induced heating, can exert on the monsoon circulation by altering the atmospheric stability.

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

Aerosol radiative forcing estimated from ground-based sky radiation measurements over East Asia

  • Kim, Do-Hyeong;Sohn, B.J.;Nakajima, T.;Okada, I.;Takamura, T.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.12-16
    • /
    • 2002
  • The clear sky radiative forcings of aerosols were evaluated over East Asia. We first investigated optical characteristics of aerosol using sky radiation measurements. An algorithm of Nakajima et al. (1996) is used for retrieving aerosol parameters such as optical thickness, ${\AA}$ngstr$\"{O}$m exponent, single scattering albedo, and size distribution from sky-radiation measurements, which then can be used for examining spatial and temporal variations of aerosol. Obtaining aerosol radiative forcing at TOA and surface, a radiative transfer model is used with inputs of obtained aerosol parameters and GMS-5 satellite-based cloud optical properties. Results show that there is a good agreement of simulated downwelling radiative flux at the surface with observation within 10 W m$^{-2}$ rms errors under the clear sky condition. However, a relatively large difference up to 40 W m$^{-2}$ rms error is found under the cloudy sky condition. The computed aerosol radiative forcing at the surface shows downward flux changes ranging from -100 to -170 W m$^{-2}$ per unit aerosol optical thickness at 0.7 $\mu$m. The different values of aerosol radiative forcing among the stations is mainly due to the differences in single scattering albedo ($\omega$$_{0.7}$) and asymmetric parameter (g$_1$) related to the geographical and seasonal variations.

  • PDF

Radiative Role of Clouds on the Earth Surface Energy Balance (지표 에너지 수지에 미치는 구름의 복사 역할)

  • Hong, Sung-Chul;Chung, Ii-Ung;Kim, Hyung-Jin;Lee, Jae-Bum;Oh, Sung-Nam
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings (지상원격탐사를 이용한 에어러솔 간접효과 연구)

  • Kim Byung-Gon;Kwon Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

Interrelationships between Sea Surface Temperatures and Clouds over the Tropical Oceans (열대 해양의 해수면온도와 구름의 상호관계)

  • 송봉근;김영섭;박경원
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.92-97
    • /
    • 2001
  • The intra-annual and interannual variations of total, high, middle, low clouds, and cloud forcing net solar radiation flux, cloud forcing net long-wave radiation flux, and SSTs over the tropical oceans are investigated with the use of ISCP D2, NCEP/NCAR Reanalysis for January 1983-December 1993. The intra-annual variation of total cloudiness is dominated by high and middle clouds in the western Pacific and central tropical oceans, the interannual variation of total cloudiness is also dominated by high and middle clouds in the central Pacific and Atlantic. The dominant intra-annual and interannual EOFs of total cloudiness have spatially coherent link with those SSTs. For the interannual EOFs, total cloudiness and SSTs are related to E1 nino-Southern Oscillation(ENSO). The second most important intra-annual EOFs of total cloudiness are related to Inter Tropical Convergence Zone(ITCZ). The third most important intra-annual EOFs show coherent relation in the western Pacific. The correlation analysis between cloud radiative effects and SSTs show spatially coherent relation over the tropical oceans even though cloud forcing cooling effect is much higher than heating effect.

  • PDF

Measurement of Optical Properties of Ice-crystal Cloud using LIDAR System and Retrieval of Its Radiative Forcing by Radiative Transfer Model (라이다 시스템을 이용한 ice-crystal cloud의 광학적 특성 관측 및 복사 전달 모델을 통한 복사강제력 산출)

  • Noh, Young-Min;Shin, Dong-Ho;Lee, Kyung-Hwa;Muller, Detlef;Kim, Young-J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.392-401
    • /
    • 2009
  • Ice-crystal clouds observation was conducted using a GIST/ADEMRC Multi-wavelength Raman lidar system in order to measure vertical profile and optical depth at Gwangju ($35^{\circ}$10'N, $126^{\circ}$53'E), Korea in December 2002, and March and April 2003. Ice-crystal clouds at high altitude can be distinguished from atmospheric aerosols by high depolarization ratio and high altitude. Ice-crystal clouds were observed at 5~12 km altitudes with a high depolarization ratio from 0.2 to 0.5. Optical depth of ice-crystal clouds had varied from 0.14 to 1.81. The radiative effect of observed ice-crystal cloud on climate system was estimated to be negative net flux in short wavelength (0.25~$4.0{\mu}m$) and positive net flux in short+long wavelength (0.25~$100{\mu}m$) at top of the atmosphere. Net flux by ice-crys tal cloud per unit optical depth was comparable to that of Asian dust.

Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors (수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정)

  • Lee, Kwon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy (우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.