Cloud service has the characteristic that it must be always available and that it must be able to respond immediately to user requests. This study suggests a method for constructing a proactive and autonomous quality and performance management system to meet these characteristics of cloud services. To this end, we identify quantitative measurement factors for cloud service quality and performance management, define a structure for applying a time series framework to cloud service application quality and performance management for proactive management, and then use big data and artificial intelligence for autonomous management. The flow of data processing and the configuration and flow of big data and artificial intelligence platforms were defined to combine intelligent technologies. In addition, the effectiveness was confirmed by applying it to the cloud service quality and performance management system through a case study. Using the methodology presented in this study, it is possible to improve the service management system that has been managed artificially and retrospectively through various convergence. However, since it requires the collection, processing, and processing of various types of data, it also has limitations in that data standardization must be prioritized in each technology and industry.
Cloud services have become the core infrastructure of the digital economy as a basis for collecting, storing, and processing large amounts of data to trigger artificial intelligence-based services and industrial innovation. Recently, cloud services have been spotlighted as a means of responding to corporate crises and changes in the work environment in a national disaster caused by COVID-19. While the cloud is attracting attention, the speed of adoption and diffusion of cloud services is not being actively carried out due to the lack of trust among users and uncertainty about security, performance, and cost. This study compares and analyzes the "Cloud Service Quality and Performance Management System" and the "Cloud Service Certification System" and suggests complementary points and improvement measures for the cloud service quality and performance management system.
In the smart industry where data plays an important role, cloud computing is being used in a complex and advanced way as a convergence technology because it has and fits well with its strengths. Accordingly, in order to utilize artificial intelligence rather than human beings for quality management of cloud computing services, a consistent standardization method of data collected from various nodes in various areas is required. Therefore, this study analyzed technologies and cases for incorporating artificial intelligence into specific services through previous studies, suggested a plan to use artificial intelligence to comprehensively standardize data in quality management of cloud computing services, and then verified it through case studies. It can also be applied to the artificial intelligence learning model that analyzes the risks arising from the data formalization method presented in this study and predicts the quality risks that are likely to occur. However, there is also a limitation that separate policy development for service quality management needs to be supplemented.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.12
/
pp.2294-2314
/
2011
The key issue in providing fast and reliable access on cloud services is the effective management of resources in a cloud system. However, the high variation in cloud service access rates affects the system performance considerably when there are no default routines to handle this type of occurrence. Adaptive techniques are used in resource management to support robust systems and maintain well-balanced loads within the servers. This paper presents an adaptive resource management for cloud systems which supports the integration of intelligent methods to promote quality of service (QoS) in provisioning of cloud services. A technique of dynamically assigning cloud services to a group of cloud servers is proposed for the adaptive resource management. Initially, cloud services are collected based on the excess cloud services load and then these are deployed to the assigned cloud servers. The assignment function uses the proposed proportional ordering which efficiently assigns cloud services based on its resource consumption. The difference in resource consumption rate in all nodes is analyzed periodically which decides the execution of service assignment. Performance evaluation showed that the proposed dynamic service assignment (DSA) performed best in throughput performance compared to other resource allocation algorithms.
While cloud services are expanding, many users are having difficulty in adopting cloud services. This is because there is no information as to which cloud services can be trusted by users. loud service level agreement (Cloud SLA) is an agreement between cloud service providers and cloud service consumers using qualitative and quantitative indicators including quality and performance, etc. of cloud services. In this study, we propose a framework for cloud SLA that can be applied to the domestic cloud industry to improve service levels for cloud service providers and to protect users and also derive the detailed components of cloud SLA applicable to the domestic cloud industry using the proposed framework. Through this result, it is expected that the government will utilize the policy to enhance the reliability between cloud service providers and users under "the Act on the Development of Cloud Computing and Protection of Users", and eventually to activate cloud services by improving the quality and performance level of domestic cloud services and building a user trust.
KIPS Transactions on Software and Data Engineering
/
v.2
no.6
/
pp.383-394
/
2013
As a way of augmenting constrained resources of mobile devices such as CPU and memory, many works on mobile cloud computing (MCC), where mobile devices utilize remote resources of cloud services or PCs, have been proposed. Typically, in MCC, many nodes with different operating systems and platform and diverse mobile applications or services are located, and a central manager autonomously performs several management tasks to maintain a consistent level of MCC overall quality. However, as there are a larger number of nodes, mobile applications, and services subscribed by the mobile applications and their interactions are extremely increased, a traditional management method of MCC reveals a fundamental problem of degrading its overall performance due to overloaded management tasks to the central manager, i.e. a bottle neck phenomenon. Therefore, in this paper, we propose a clustering-based optimization method to solve performance-related problems on large-scaled MCC and to stabilize its overall quality. With our proposed method, we can ensure to minimize the management overloads and stabilize the quality of MCC in an active and autonomous way.
International conference on construction engineering and project management
/
2015.10a
/
pp.665-666
/
2015
Recently BIM technology has been expanded for using in construction project. However its spread has been delayed than the initial expectations, due to the high-cost of BIM infrastructure development, the lack of regulations, the lack of process and so forth. In construction site phase, especially the analysis of current research trend about IT technologies, virtualization and BIM service, data exchange such as drawing, 3D model, object data, properties using cloud computing and virtual server system is defined as a most successful solution. The purpose of this study is enable the cloud computing BIM server to provide several main function such as edit a model, 3D model viewer and checker, mark-up, snapshot in high-performance quality by proper design of VDI system. Concurrent client connection performance is a main technical index of VDI. Through test-bed server client, developed VDI system's multi-connect control will be evaluated. The performance-test result of BIM server VDI will effect to development direction of cloud computing BIM service for commercialization.
Journal of Information Technology Applications and Management
/
v.28
no.2
/
pp.1-16
/
2021
In recent years, as IT technologies such as cloud computing and mobile payment have evolved and Internet users have increased, the Internet financial market has become intelligent, mobile, and platformed. This study considers the impact of the psychological characteristics of platform systems and users on the performance of fintech platforms. The results of this study are as follows. Information quality affected trust and commitment, service quality affected commitment only, and system quality affected trust and commitment. The perceived risk affected trust and commitment, and the perceived benefit only affected trust and was shown to have an insignificant relationship with immersion. Trust has been shown to have a significant relationship with commitment, and both trust and commitment affected performance. In the validation of mediation effects, trust has shown a partially mediated effect between information quality, system quality, perceived risks, and perceived benefits and performance. There was no mediation effect between service quality and performance. Immersion has been shown to have a partial mediating effect between information quality, service quality, system quality, perceived risk and performance, and there is no mediating effect between perceived benefits and performance. This study showed what are the main factors that affect the performance of the fintech platform and will be used as a useful foundation for increasing the performance of the platform in the future.
International Journal of Computer Science & Network Security
/
v.21
no.4
/
pp.115-122
/
2021
In the recent past enormous enterprise applications have migrated into the cloud computing (CC). The researchers have contributed to this ever growing technology and as a result several innovations strengthened to offer the quality of service (QoS) as per the demand of the customer. It was treated that management of resources as the major challenge to offer the QoS while focusing on the trade-offs among the performance, availability, reliability and the cost. Apart from these regular key focuses to meet the QoS other key issues in CC are data integrity, privacy, transparency, security and legal aspects (DIPTSL). This paper aims to carry out the literature survey by reflecting on the prior art of the work with regard to QoS in CC and possible implementation of block chain to implement decentralised CC solutions governing DIPTSL as an integral part of QoS.
This research highlights the process of adopting cloud computing technology from users' perspective. Concentrating on perceived mechanism from employees side that lead to job performance at work. Cloud computing, the new player in our modern business environment, authors employ diffusion of innovation theory to capture how this new technology affect employees in workplace in terms of job performance. Education for this new system and managerial support by firm were used as moderating variable to test dependent variable, job performance. Research was done through survey from total 284 people working in metropolitan area at South Korea. The result shows that cloud computing system affect positively on work efficiency, and the extent of diffusion factors that influence from the most to least are as follow: 1. Users' Skill, 2. System Quality, 3. Information Quality, 4. Group Awareness, 5. Attitude towards New System. To test diffusion factors of cloud computing and job performance, South Korean people actually felt that cloud computing help their job performance and the extent of diffusion factors that influence from the most to least are as follow: 1. Users' Skill, 2. System Quality, 3. Information Quality, 4. Attitude towards New System, 5. Group Awareness. As for diffusion factors of cloud computing and productivity, result proved that cloud computing really helps firms, and the extent of diffusion factors that influence from the most to least are as follow: 1. Information Quality, 2. Attitude towards New System, 3. Group Awareness, 4. System Quality, 5. Users' Skill. Two moderating variables, employee education and managerial support were tested to prove whether these two variables affect the job performance and the result displays positive affect for both two factors. To conclude, adopting cloud computing helps firms by increase employees' work efficiency and job performance. In order to accelerate the process employees education really matters because users' skill is the most crucial among diffusion factors.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.