• Title/Summary/Keyword: Cloud Virtual Reality

Search Result 50, Processing Time 0.023 seconds

Edge Computing Server Deployment Technique for Cloud VR-based Multi-User Metaverse Content (클라우드 VR 기반 다중 사용자 메타버스 콘텐츠를 위한 엣지 컴퓨팅 서버 배치 기법)

  • Kim, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1090-1100
    • /
    • 2021
  • Recently, as indoor activities increase due to the spread of infectious diseases, the metaverse is attracting attention. Metaverse refers to content in which the virtual world and the real world are closely related, and its representative platform technology is VR(Virtual Reality). However, since VR hardware is difficult to access in terms of cost, the concept of streaming-based cloud VR has emerged. This study proposes a server configuration and deployment method in an edge network when metaverse content involving multiple users operates based on cloud VR. The proposed algorithm deploys the edge server in consideration of the network and computing resources and client location for cloud VR, which requires a high level of computing resources while at the same time is very sensitive to latency. Based on simulation, it is confirmed that the proposed algorithm can effectively reduce the total network traffic load regardless of the number of applications or the number of users through comparison with the existing deployment method.

A Study on the Visualization of Data in Virtual Space utilizing Realistic Exhibition Contents - Focusing on the application of the Tamed Cloud clustering algorithm in 70mK project (전시콘텐츠에 구현된 가상공간 내 데이터 시각화 연구 - 70mK의 Tamed Cloud 군집형 알고리즘 적용을 중심으로)

  • Sungmin Kang;Daniel H. Byun
    • Trans-
    • /
    • v.15
    • /
    • pp.1-24
    • /
    • 2023
  • This study examines the application of data visualization technology using a clustered data algorithm called 'Tamed Cloud' to virtual spaces and seeks the possibility of implementing it in various types of realistic exhibition contents. To this end, we first attempt to classify virtual reality (VR) exhibition contents starting with COVID-19, and summarize technologies applied. Also, various realistic exhibition contents provide visitors with an opportunity to appreciate the artworks through online and virtual exhibitions. In this trend, virtual reality and augmented reality (AR) technologies have been introduced, allowing visitors to enjoy the artwork more immersively, and the possibility of realistic exhibition content with interaction between the artwork and the user is also being demonstrated. Based on this background, this study examines the history of exhibition contents by dividing them before and after the advent of virtual reality technology, and examines how the clustered algorithm technology called Tamed Cloud was applied to virtual space and implemented as a realistic exhibition content in <70mK> project. By synthesizing all of this, we propose a convergence method of data visualization, virtual reality, and realistic content, and propose it as a new alternative to realistic exhibition content in virtual space.

Real-virtual Point Cloud Augmentation Method for Test and Evaluation of Autonomous Weapon Systems (자율무기체계 시험평가를 위한 실제-가상 연계 포인트 클라우드 증강 기법)

  • Saedong Yeo;Gyuhwan Hwang;Hyunsung Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.375-386
    • /
    • 2024
  • Autonomous weapon systems act according to artificial intelligence-based judgement based on recognition through various sensors. Test and evaluation for various scenarios is required depending on the characteristics that artificial intelligence-based judgement is made. As a part of this approach, this paper proposed a LiDAR point cloud augmentation method for mixed-reality based test and evaluation. The augmentation process is achieved by mixing real and virtual LiDAR signals based on the virtual LiDAR synchronized with the pose of the autonomous weapon system. For realistic augmentation of test and evaluation purposes, appropriate intensity values were inserted when generating a point cloud of a virtual object and its validity was verified. In addition, when mixing the generated point cloud of the virtual object with the real point cloud, the proposed method enhances realism by considering the occlusion phenomenon caused by the insertion of the virtual object.

A Prospective Study of Game Content based on Wearable Device (웨어러블 디바이스 기반의 게임콘텐츠 전망 연구)

  • Baek, Jaeyong;Chang, Hyojin;Kim, Youngjae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.145-155
    • /
    • 2015
  • The game industry has changed along with the advancement of device technology. The wearable, a recently appeared device will create new demand in this saturated age of the smart devices. The game industry's content targeted towards the wearable devices will play an important role as main driving source. For this reason, this research studies the development aspect and the current technical capabilities of games' platforms and contents by analyzing the contrast between the results of features and current situations of the wearable market. Consequently, we define the prospects of game content for wearable device. We also expect that the new style of the game content, combined with cloud game, augmented reality game and virtual reality game will appear in the next generation platforms gearing towards the wearable devices.

Multiple Depth and RGB Camera-based System to Acquire Point Cloud for MR Content Production (MR 콘텐츠 제작을 위한 다중 깊이 및 RGB 카메라 기반의 포인트 클라우드 획득 시스템)

  • Kim, Kyung-jin;Park, Byung-seo;Kim, Dong-wook;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.445-446
    • /
    • 2019
  • Recently, attention has been focused on mixed reality (MR) technology, which provides an experience that can not be realized in reality by fusing virtual information into the real world. Mixed reality has the advantage of having excellent interaction with reality and maximizing immersion feeling. In this paper, we propose a method to acquire a point cloud for the production of mixed reality contents using multiple Depth and RGB camera system.

  • PDF

Performance Management Technique of Remote VR Service for Multiple Users in Container-Based Cloud Environments Sharing GPU (GPU를 공유하는 컨테이너 기반 클라우드 환경에서 다수의 사용자를 위한 원격 VR 서비스의 성능 관리 기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.9-22
    • /
    • 2022
  • Virtual Reality(VR) technology is an interface technology that is actively used in various audio-visual-based applications by showing users a virtual world composed of computer graphics. Since VR-based applications are graphic processing-based applications, expensive computing devices equipped with Graphics Processing Unit(GPU) are essential for graphic processing. This incurs a cost burden on VR application users for maintaining and managing computing devices, and as one of the solutions to this, a method of operating services in cloud environments is being used. This paper proposes a performance management technique to address the problem of performance interference between containers owing to GPU resource competition in container-based high-performance cloud environments in which multiple containers share a single GPU. The proposed technique reduces performance deviation due to performance interference, helping provide uniform performance-based remote VR services for users. In addition, this paper verifies the efficiency of the proposed technique through experiments.

MPEG-DASH based 3D Point Cloud Content Configuration Method (MPEG-DASH 기반 3차원 포인트 클라우드 콘텐츠 구성 방안)

  • Kim, Doohwan;Im, Jiheon;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.660-669
    • /
    • 2019
  • Recently, with the development of three-dimensional scanning devices and multi-dimensional array cameras, research is continuously conducted on techniques for handling three-dimensional data in application fields such as AR (Augmented Reality) / VR (Virtual Reality) and autonomous traveling. In particular, in the AR / VR field, content that expresses 3D video as point data has appeared, but this requires a larger amount of data than conventional 2D images. Therefore, in order to serve 3D point cloud content to users, various technological developments such as highly efficient encoding / decoding and storage, transfer, etc. are required. In this paper, V-PCC bit stream created using V-PCC encoder proposed in MPEG-I (MPEG-Immersive) V-PCC (Video based Point Cloud Compression) group, It is defined by the MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard, and provides to be composed of segments. Also, in order to provide the user with the information of the 3D coordinate system, the depth information parameter of the signaling message is additionally defined. Then, we design a verification platform to verify the technology proposed in this paper, and confirm it in terms of the algorithm of the proposed technology.

Point Cloud Generation Method Based on Lidar and Stereo Camera for Creating Virtual Space (가상공간 생성을 위한 라이다와 스테레오 카메라 기반 포인트 클라우드 생성 방안)

  • Lim, Yo Han;Jeong, In Hyeok;Lee, San Sung;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1518-1525
    • /
    • 2021
  • Due to the growth of VR industry and rise of digital twin industry, the importance of implementing 3D data same as real space is increasing. However, the fact that it requires expertise personnel and huge amount of time is a problem. In this paper, we propose a system that generates point cloud data with same shape and color as a real space, just by scanning the space. The proposed system integrates 3D geometric information from lidar and color information from stereo camera into one point cloud. Since the number of 3D points generated by lidar is not enough to express a real space with good quality, some of the pixels of 2D image generated by camera are mapped to the correct 3D coordinate to increase the number of points. Additionally, to minimize the capacity, overlapping points are filtered out so that only one point exists in the same 3D coordinates. Finally, 6DoF pose information generated from lidar point cloud is replaced with the one generated from camera image to position the points to a more accurate place. Experimental results show that the proposed system easily and quickly generates point clouds very similar to the scanned space.

A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors (RGB-D 카메라를 이용한 실시간 가상 현실 평면 추정)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.319-324
    • /
    • 2016
  • In the case of robot and Argument Reality applications using a camera in environments, a technology to estimate planes is a very important technology. A RGB-D camera can get a three-dimensional measurement data even in a flat which has no information of the texture of the plane;, however, there is an enormous amount of computation in order to process the point-cloud data of the image. Furthermore, it could not know the number of planes that are currently observed as an advance, also, there is an additional operation required to estimate a three dimensional plane. In this paper, we proposed the real-time method that decides the number of planes automatically and estimates the three dimensional plane by using the continuous data of an RGB-D camera. As experimental results, the proposed method showed an improvement of approximately 22 times faster speed compared to processing the entire data.

Technology Standard Trends in Distributed and Edge Cloud Computing (분산 및 에지 클라우드 기술 표준 동향)

  • M.K. In;K.C. Lee;S.Y. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.3
    • /
    • pp.69-78
    • /
    • 2024
  • Cloud computing technology based on centralized high-performance computing has brought about major changes across the information technology industry and led to new paradigms. However, with the rapid development of the industry and increasing need for mass generation and real-time processing of data across various fields, centralized cloud computing is lagging behind the demand. This is particularly critical in emerging technologies such as autonomous driving, the metaverse, and augmented/virtual reality that require the provision of services with ultralow latency for real-time performance. To address existing limitations, distributed and edge cloud computing technologies have recently gained attention. These technologies allow for data to be processed and analyzed closer to their point of generation, substantially reducing the response times and optimizing the network bandwidth usage. We describe distributed and edge cloud computing technologies and explore the latest trends in their standardization.