• Title/Summary/Keyword: Cloud Computing Services

Search Result 644, Processing Time 0.027 seconds

An Efficient Software Defined Data Transmission Scheme based on Mobile Edge Computing for the Massive IoT Environment

  • Kim, EunGyeong;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.974-987
    • /
    • 2018
  • This paper presents a novel and efficient data transmission scheme based on mobile edge computing for the massive IoT environments which should support various type of services and devices. Based on an accurate and precise synchronization process, it maximizes data transmission throughput, and consistently maintains a flow's latency. To this end, the proposed efficient software defined data transmission scheme (ESD-DTS) configures and utilizes synchronization zones in accordance with the 4 usage cases, which are end node-to-end node (EN-EN), end node-to-cloud network (EN-CN), end node-to-Internet node (EN-IN), and edge node-to-core node (EdN-CN); and it transmit the data by the required service attributes, which are divided into 3 groups (low-end group, medium-end group, and high-end group). In addition, the ESD-DTS provides a specific data transmission method, which is operated by a buffer threshold value, for the low-end group, and it effectively accommodates massive IT devices. By doing this, the proposed scheme not only supports a high, medium, and low quality of service, but also is complied with various 5G usage scenarios. The essential difference between the previous and the proposed scheme is that the existing schemes are used to handle each packet only to provide high quality and bandwidth, whereas the proposed scheme introduces synchronization zones for various type of services to manage the efficiency of each service flow. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of throughput, control message overhead, and latency. Therefore, the proposed ESD-DTS is very suitable for upcoming 5G networks in a variety of massive IoT environments with supporting mobile edge computing (MEC).

Smart Service System-based Architecture Design of Smart Factory (스마트 서비스 시스템 기반 스마트 팩토리 아키텍처 설계)

  • Lee, Heeje;Lee, Joongyoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • A new paradigm based on distributed manufacturing services is emerging. This paradigm shift can be realized by smart functions and smart technologies such as Cyber Physical System (CPS), Artificial Intelligence (AI), and Cloud Computing. Most architectures define stack levels from Level 0 (equipment) to Level 4 (business area) and specify the services to be provided between them. Because of their a rough technical specification, there is a limitation on how to actually utilize a technology to actually implement a smart factory service with this architecture. In this paper, we propose a smart factory architecture that can be utilized directly from the perspective of a smart service system by making the use of System Engineering Process and System Modeling Language (SysML).

A Study of Data Interoperability System using DBaaS for Mobility Handicapped

  • Kwon, TaeWoo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.97-102
    • /
    • 2019
  • As the number of "Mobility Handicapped" increases, the incidence of "Mobility Handicapped" traffic accidents is also increasing. In order to reduce the incidence of traffic accidents in the "Mobility Handicapped", a service providing system for "Mobility Handicapped" is required. Since these services have different data formats, data heterogeneity occurs. Therefore, the system should resolve the data heterogeneity by mapping the format of the data. In this paper, we design DBaaS as a mobility handicapped system for data interoperability. This system provides a service to extend the flashing time of the traffic lights according to the condition of "Mobility Handicapped" on the occurrence of a fall or a crosswalk in a crosswalk where there is a risk of a traffic accident. These services can reduce the incidence of traffic accidents in "Mobility Handicapped".

Addressing the Cold Start Problem of Recommendation Method based on App (초기 사용자 문제 개선을 위한 앱 기반의 추천 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.69-78
    • /
    • 2019
  • The amount of data is increasing significantly as information and communication technology advances, mobile, cloud computing, the Internet of Things and social network services become commonplace. As the data grows exponentially, there is a growing demand for services that recommend the information that users want from large amounts of data. Collaborative filtering method is commonly used in information recommendation methods. One of the problems with collaborative filtering-based recommendation method is the cold start problem. In this paper, we propose a method to improve the cold start problem. That is, it solves the cold start problem by mapping the item evaluation data that does not exist to the initial user to the automatically generated data from the mobile app. We describe the main contents of the proposed method and explain the proposed method through the book recommendation scenario. We show the superiority of the proposed method through comparison with existing methods.

MLOps Technology Trend Supporting Automatic Generation of Neural Network (신경망 자동생성 지원 MLOps 기술 동향)

  • S.T. Kim;C.S. Cho
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.12-20
    • /
    • 2024
  • As more devices are used across various industries and their performance improves, artificial intelligence applications are being increasingly adopted. Hence, the rapid development of neural networks suitable for diverse devices can determine the competitiveness of companies. Machine learning operations (MLOps), which constitute a framework that supports neural network generation and its immediate application to devices, have become necessary for the development of artificial intelligence. Currently, most MLOps are provided by major companies such as Google, Amazon, and Microsoft, which provide cloud services supported by large-scale computing power. In addition, various services are provided by the open-source project Kubeflow. We examine basic concepts and technology trends in MLOps and unveil additional functions required in industry.

Context-aware Protype for Adaptive Recommendation Service on Mobile (모바일 환경에서 능동적 추천 서비스를 위한 상황인식 프로토타입)

  • Chang, Hyo-Kyung;Kang, Yong-Ho;Choi, Eui-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.257-264
    • /
    • 2012
  • The development of mobile devices and the spread of wireless network help share and exchange information and resources more easily. The bond them to Cloud Computing technology help pay attention to "Mobile Cloud" service, so there have been being a lot of studies on "Mobile Cloud" service. Especially, the important of 'Recommendation Service' which is customized for each user's preference and context has been increasing. In order to provide appropriate recommendation services, it enables to recognize user's current state, analyze the user's profile like user's tendency and preference, and draw the service answering the user's request. Most existing frameworks, however, are not very suitable for mobile devices because they were proposed on the web-based. And other context information except location information among user's context information are not much considered. Therefore, this paper proposed the context-aware framework, which provides more suitable services by using user's context and profile.

REDUCING LATENCY IN SMART MANUFACTURING SERVICE SYSTEM USING EDGE COMPUTING

  • Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system

Intelligent Safe Network Technology for the Smart Working Environments based on Cloud (클라우드 기반 스마트 사무환경 구축을 위한 지능형 세이프 네트워크 기술)

  • Kim, Seok-Hoon;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.345-350
    • /
    • 2014
  • According to the necessity of smart working with various mobile devices, and the increasing services based on the converged infrastructures such as Cloud, Wearable Computing, Next Generation Wired/Wireless Mobile Networks, the network reliability has been one of the most important things. However, the research related to the network reliability is still insufficient. To solve these problems, we propose the ISNTC (Intelligent Safe Network Technology based on Cloud), which uses the safe network technique based on SDN, to be adopted to the smart working environments. The proposed ISNTC guarantees secure data forwarding through the synchronized transmission path and timing. We have verified the throughput which outperformed the existing techniques through the computer simulations using OPnet.

6G in the sky: On-demand intelligence at the edge of 3D networks (Invited paper)

  • Strinati, Emilio Calvanese;Barbarossa, Sergio;Choi, Taesang;Pietrabissa, Antonio;Giuseppi, Alessandro;De Santis, Emanuele;Vidal, Josep;Becvar, Zdenek;Haustein, Thomas;Cassiau, Nicolas;Costanzo, Francesca;Kim, Junhyeong;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.643-657
    • /
    • 2020
  • Sixth generation will exploit satellite, aerial, and terrestrial platforms jointly to improve radio access capability and unlock the support of on-demand edge cloud services in three-dimensional (3D) space, by incorporating mobile edge computing (MEC) functionalities on aerial platforms and low-orbit satellites. This will extend the MEC support to devices and network elements in the sky and forge a space-borne MEC, enabling intelligent, personalized, and distributed on-demand services. End users will experience the impression of being surrounded by a distributed computer, fulfilling their requests with apparently zero latency. In this paper, we consider an architecture that provides communication, computation, and caching (C3) services on demand, anytime, and everywhere in 3D space, integrating conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and management of aerial devices need to be jointly orchestrated via artificial intelligence-based algorithms, exploiting virtualized network functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.

Multi-Hop Vehicular Cloud Construction and Resource Allocation in VANETs (VANET 망에서 다중 홉 클라우드 형성 및 리소스 할당)

  • Choi, Hyunseok;Nam, Youngju;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.11
    • /
    • pp.263-270
    • /
    • 2019
  • Vehicular cloud computing is a new emerging technology that can provide drivers with cloud services to enable various vehicular applications. A vehicular cloud is defined as a set of vehicles that share their own resources. Vehicles should collaborate with each other to construct vehicular clouds through vehicle-to-vehicle communications. Since collaborating vehicles to construct the vehicular cloud have different speeds, directions and locations respectively, the vehicular cloud is constructed in multi-hop communication range. Due to intermittent wireless connectivity and low density of vehicles with the limited resources, the construction of vehicular cloud with multi-hop communications has become challenging in vehicular environments in terms of the service success ratio, the service delay, and the transmitted packet number. Thus, we propose a multi-hop vehicular cloud construction protocol that increases the service success ratio and decreases the service delay and the transmitted packet number. The proposed protocol uses a connection time-based intermediate vehicle selection scheme to reduce the cloud failure probability of multi-hop vehicular cloud. Simulation results conducted in various environments verify that the proposed protocol achieves better performance than the existing protocol.