• Title/Summary/Keyword: Closest point of approach

Search Result 54, Processing Time 0.028 seconds

A Modification of the Approach to the Evaluation of Collision Risk Using Sech Function

  • Jeong, Tae-Gweon;Chao, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.83-88
    • /
    • 2006
  • Evaluation of collision risk plays a key role in developing the expert system of navigation and collision avoidance. This paper presents a new collision risk model formula that is one modification model on the basis of one approach to the evaluation of collision risk using sech function produced by Prof. Jeong in his relevant $articles^{[2][3][4][5]}$. And as a grope in collision risk evaluation field, this paper applied the new model in appraising the collision risk, suggested how to decide the safe range of own ship’'s action. Moreover this paper also analyzed theoretically how to determine the coefficients as describes in the new modification model formula, and suggested the appropriate values as applicable.

  • PDF

Algorithm for Pairwise Collision Detection and Avoidace in 3-D (3차원 일대일 충돌 감지 및 회피 알리고리듬)

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.996-1002
    • /
    • 2008
  • This paper presents the development of a real-time algorithm for collision detection, collision avoidance and guidance to way-point. Three-dimensional point-mass aircraft models are used. For collision detection, time of closest point of approach(CPA) and distance at CPA are compared to threshold values. For collision avoidance, optimal acceleration input which maximizes the terminal relative distance is calculated based on optimal control theory. For guidance to way-point, proportional navigation guidance, the well-known method, is used. Two scenarios of encounter situation are illustrated to validate performance of proposed algorithm.

A Study on Medial Surface Extraction from Point Samples on 3D Closed Surfaces in Shell Shapes (셸 형상의 3차원 폐곡면상에서 추출된 점데이터군으로부터 중립곡면 계산에 관한 연구)

  • Woo, Hyuck-Je
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • In this study, new medial surface calculation methods using Voronoi diagrams are investigated for the point samples extracted on closed surface models. The medial surface is defined by the closure of all points having more than one closest point on the shape boundary. It is a one of essential geometric information in 3D and can be used in many areas such as 3D shape analysis, dimension reduction, freeform shape deformation, image processing, computer vision, FEM analysis, etc. In industrial parts, the idealized solid parts and shell shapes including sharp edges and vertices are frequently used. Other medial surface extraction methods using Voronoi diagram have inherent separation and branch problems, so that they are not appropriate to the sharp edged objects and have difficulties to be applied to industrial parts. In addition, the branched surfaces on sharp edges in shell shapes should be eliminated to obtain representative medial shapes. In order to avoid separation and branch problems, the new approach by analyzing the shapes and specially sampling on surfaces has been developed.

A Probabilistic Algorithm for Multi-aircraft Collision Detection and Resolution in 3-D

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This paper presents a real-time algorithm for collision detection, collision avoidance and guidance. Three-dimensional point-mass aircraft models are used. For collision detection, conflict probability is calculated by using the Monte-Carlo Simulation. Time at the closest point of approach(CPA) and distance at CPA are needed to determine the collision probability, being compared to certain threshold values. For collision avoidance, one of possible maneuver options is chosen to minimize the collision probability. For guidance to a designated way-point, proportional navigation guidance law is used. Two scenarios on encounter situation are studied to demonstrate the performance of proposed algorithm.

The Relative Position Estimate of the Moving Distributed Sources Using the Doppler Scanning Technique (도플러 스캐닝 기법을 이용한 이동하는 다중 음원의 상대 위치 추적 기법)

  • 노용주;윤종락;전재진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.446-454
    • /
    • 2002
  • This paper presents the Doppler Scanning technique which enables us to detect the relative positions of moving distributed sources using Doppler frequency shift estimate when the moving source consists of distributed sources with different signature frequencies. Doppler frequency shifts of characteristic frequencies of machinery noise sources such as ship's generator and propeller, with tine along CPA (Closest Point of Approach of moving source) are unique, and can be functioned with respect to each source position. Therefore, this technique can be applied to estimate the relative geometrical positions between machinery noise sources. The Extended Kalman Filter (EKF) which has a high frequency resolution with high time resolution, is adopted for improving accuracy of Doppler frequency shift estimate geometric resolution of machinery positions since machinery noise sources show in general low frequency band characteristics with limited spacial distance. The performance of the technique is examined by the numerical simulations and is verified by the experiment using loudspeaker sources on the roof of the car.

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

Depth estimation of an underwater target using DIFAR sonobuoy (다이파 소노부이를 활용한 수중표적 심도 추정)

  • Lee, Young gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.302-307
    • /
    • 2019
  • In modern Anti-Submarine Warfare, there are various ways to locate a submarine in a two-dimensional space. For more effective tracking and attack against a submarine the depth of the target is a critical factor. However, it has been difficult to find out the depth of a submarine until now. In this paper a possible solution to the depth estimation of submarines is proposed utilizing DIFAR (Directional Frequency Analysis and Recording) sonobuoy information such as contact bearings at or prior to CPA (Closest Point of Approach) and the target's Doppler signals. The relative depth of the target is determined by applying the Pythagorean theorem to the slant range and horizontal range between the target and the hydrophone of a DIFAR sonobuoy. The slant range is calculated using the Doppler shift and the target's velocity. the horizontal range can be obtained by applying a simple trigonometric function for two consecutive contact bearings and the travel distance of the target. The simulation results show that the algorithm is subject to an elevation angle, which is determined by the relative depth and horizontal distance between the sonobuoy and target, and that a precise measurement of the Doppler shift is crucial.

3D localization of internal noise source based on Doppler effect (도플러 효과를 기반으로한 내부 소음원의 3차원 위치 추정)

  • Bae, Jung-Ho;Seong, Woojae;Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.310-318
    • /
    • 2016
  • This study deals with a method to localize a noise source occuring in a marine vehicle in a 3D environment. Even when access to the noise source is limited for a marine vehicle, such as a ship or a submarine in operation, the signal received on a hydrophone located elsewhere contains Doppler effected noise by moving relatively. This study suggests noise localization algorithm in 3D based on Doppler effect by moving marine vehicle. Using a known source mounted on the vehicle, the noise source was estimated by reducing the range of Doppler center and closest point of approach via the least square method. The algorithm was verified through various simulations and it was shown that the noise could be localized in 3D based on Doppler effect by employing two fixed hydrophones located at the vehicle's exterior points and a known reference signal generator located somewhere on the vehicle.

A Study on the Method of Safe Shiphandling in Violently Rough Sea by Typoon or Hurricane

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The object of this study is to develop the method of safe conducting of a vessel through stormy sea when we encounter typoon or hurricane on ocean. The scope of investigation in this paper will be limited to safe maneuvering related only with rolling motions of a vessel. The processes of investigations are as follows; Firstly, we decide a CPA(Closest Point of Approach) with the center of the storm and decide significant wave height($H_{1/3}$) by SMB method and then calculate wave height of the highest of 1000 waves($H_{1/1000}$) and other data. Secondly, we make mathematical model of rolling motions of the vessel on the stormy sea and calculate the biggest rolling angle of the vessel and etc. Thirdly, we decide the most safe maneuvering method to ride out the stormy sea. By the above mentioned method we are able to calculate the status of the stormy sea and ships motions to be encountered and ride out safely through violently rough sea.

Automatic Surface Matching for the Registration of LIDAR Data and MR Imagery

  • Habib, Ayman F.;Cheng, Rita W.T.;Kim, Eui-Myoung;Mitishita, Edson A.;Frayne, Richard;Ronsky, Janet L.
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 2006
  • Several photogrammetric and geographic information system applications such as surface matching, object recognition, city modeling, environmental monitoring, and change detection deal with multiple versions of the same surface that have been derived from different sources and/or at different times. Surface registration is a necessary procedure prior to the manipulation of these 3D datasets. This need is also applicable in the field of medical imaging, where imaging modalities such as magnetic resonance imaging (MRI) can provide temporal 3D imagery for monitoring disease progression. This paper will present a general automated surface registration procedure that can establish correspondences between conjugate surface elements. Experimental results using light detection and ranging (LIDAR) and MRI data will verify the feasibility, robustness, and accuracy of this approach.

  • PDF