• 제목/요약/키워드: Closed-loop system

검색결과 1,427건 처리시간 0.029초

Multibody Dynamics of Closed, Open, and Switching Loop Mechanical Systems

  • Youm, Youn-Gil
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.237-254
    • /
    • 2005
  • The vast mechanical systems could be classified as closed loop system, open loop system and open & closed (switching) system. In the closed loop system, the kinematics and dynamics of 3-D mechanisms will be reviewed and closed form solutions using the direction cosine matrix method and reflection transformation method will be introduced. In the open loop system, kinematic & dynamic analysis methods regarding the redundant system which has more degrees of freedom in joint space than those of task space are reviewed and discussed. Finally, switching system which changes its phase between closed and open loop motion is investigated with the principle of dynamical balance. Among switching systems, the human gait in biomechanics and humanoid in robotics are presented.

A Strategy for Balanced Power Regulation of Energy Storage Systems in a Distribution System during Closed-Loop Operation

  • Han, Yoon-Tak;Oh, Joon-Seok;Cha, Jae-Hun;An, Jae-Yun;Hyun, Seung-Yoon;Lee, Jong-Kwan;Seo, In-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2208-2218
    • /
    • 2017
  • To resolve overload in a distribution system, a distribution system operator (DSO) often performs a load transfer using normally open tie points and switches in the distribution line. During this process, the distribution system is momentarily operated in closed-loop operation. A closed-loop current in the distribution system can cause a power failure due to excess breaking current in the circuit breakers and reclosers. Therefore, it is necessary to calculate the closed-loop current exactly. However, if there are a large number of distributed generation (DG) systems in the distribution system, such as energy storage systems (ESS), they might obstruct the closed-loop operation based on bidirectional power flow. For quick and precise operation of a closed-loop system, the ESS has to regulate the power generation while satisfying closed-loop operation in the worst cases. We propose a strategy for balanced power regulation of an ESS. Simulations were carried out using PSCAD/EMTDC, and the results were compared with calculation results.

궤환 제어를 이용한 시스템 규명 (System identification using the feedback loop)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.409-412
    • /
    • 2001
  • Identification of systems operating in closed loop has long been of prime interest in industrial applications. The fundamental problem with closed-loop data is the correlation between the unmeasurable noise and the input. This is the reason why several methods that work in open loop fail when applied to closed-loop data. The prediction error based approaches to the closed-loop system are divided to direct method and indirect method. Both of direct and indirect methods are known to be applied to the closed-loop data without critical modification. But the direct method induces the bias error in the experimental frequency response function and this bias error may deteriorates the parameter estimation performance

  • PDF

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling controller for feedback model updating)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling Controller for Feedback Model Updating)

  • 정훈상;박영진
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.955-961
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. But it is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. In this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed Just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

Dynamic System Modeling for Closed Loop Supply Chains System

  • Wadhwa, Subhash;Madaan, Jitendra
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.78-89
    • /
    • 2008
  • The need for holistic modeling efforts for returns that capture the extended closed loop supply chain (CLSC) system at strategic as well as operational level has been clearly recognized by the industry and academia. Strategic decision-makers need comprehensive models that can guide them in efficient decision-making to increase the profitability of the entire forward and return chain. Therefore, determination of a near optimal design configuration, which includes the environmental, economical and technological capability factors, is important in strategic decision-making effort that affect the profitability of the closed loop supply chain. In this paper, we adopted an improved system dynamics methodology to tackle strategic issues that affect various performance measures, like market, time/cost, environment etc., for closed loop supply chains. After studying real life implementation issues in CLSC design, we presented guidelines for the PBM (Participative Business Modeling) methodology and presented its extension for the strategic dynamic system modeling of return chains. Finally, we demonstrated the measurement of operational performance by extending SD (system dynamic) application to closed loop supply chain management.

A Note to the Stability of Fuzzy Closed-Loop Control Systems

  • 홍덕헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권1호
    • /
    • pp.89-97
    • /
    • 2001
  • Chen and Chen(FSS, 1993, 159-168) presented a reasonable analytical model of fuzzy closed-loop systems and proposed a method to analyze the stability of fuzzy control by the relational matrix of fuzzy system. Chen, Lu and Chen(IEEE Trans. Syst. Man Cybern., 1995, 881-888) formulated the sufficient and necessary conditions on stability of fuzzy closed-loop control systems. Gang and Chen(FSS, 1996, 27-34) deduced a linguistic relation model of a fuzzy closed loop control system from the linguistic models of the fuzzy controller and the controlled process and discussed the linguistic stability of fuzzy closed loop system by a linguistic relation matrix. In this paper, we study more on their models. Indeed, we prove the existence and uniqueness of equilibrium state $X_e$ in which fuzzy system is stable and give closed form of $X_e$. The same examples in Chen and Chen and Gang and Chen are treated to analyze the stability of fuzzy control systems.

  • PDF

신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명 (Closed Loop System Identification of Steam Generator Using Neural Networks)

  • 박종호;한후석;정길도
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구 (Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System)

  • 홍부표;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems

  • Chen, C.Y.J.;Kuo, D.;Hsieh, Chia-Yen;Chen, Tim
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.797-807
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. This paper proposes a novel artificial intelligence based EBA (Evolved Bat Algorithm) controller with machine learning matched membership functions in the complex nonlinear system. The proposed affine transformed membership functions are adopted and stabilization and performance criterion of the closed-loop fuzzy systems are obtained through a new parametrized linear matrix inequality which is rearranged by machine learning affine matched membership functions. The trajectory of the closed-loop dithered system and that of the closed-loop fuzzy relaxed system can be made as close as desired. This enables us to get a rigorous prediction of stability of the closed-loop dithered system by establishing that of the closed-loop fuzzy relaxed system.