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Multibody Dynamics of Closed, Open, and Switching Loop
Mechanical Systems

Youngil Youm*

Department of Mechanical Engineering,
Pohang University of Science & Technology, Pohang 790-784, Korea

The vast mechanical systems could be classified as closed loop system, open loop system and

open & closed (switching) system. In the closed loop system, the kinematics and dynamics of

3-D mechanisms will be reviewed and closed form solutions using the direction cosine matrix

method and reflection transformation method will be introduced. In the open loop system,

kinematic & dynamic analysis methods regarding the redundant system which has more degrees

of freedom in joint space than those of task space are reviewed and discussed. Finally, switching

system which changes its phase between closed and open loop motion is investigated with the

principle of dynamical balance. Among switching systems, the human gait in biomechanics and

humanoid in robotics are presented.
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1. Introduction

Modern mechanical systems are often very com-
plex and consist of many components intercon-
nected by joints and force elements. These sys-
tems are referred to as multibody dynamic sys-
tems. The multibody dynamics has been applied
in various complicated systems such as autom-
obiles, helicopters, airplanes, aerospace vehicles,
war weapons etc. In this presentation, the devel-
opment of multibody dynamics will be reviewed
as considering the type of dynamic systems and
its applications.

In the first section, mechanical systems of the
closed-loop system with complete constraints
mainly 3-D mechanisms will be reviewed and
some of our research activities will be presented.
Later, the multibody dynamics played a key role
in the open-loop mechanical system in areas of
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the robotics and biomechanics where the robotic
system is partially constrained and biomechanical
system is intermittently constrained.

In robotics area, the focus of multibody dyna-
mics was put on the robot itself. The topics are
concerned about dynamics of articulated multi-
link system, open/closed-loop structure, fixed
configuration and invariant topology in system
structure, efficient and compact formulation of
forward dynamics simulation. Inverse dynamics
computation is given much attention, and flexi-
bility in link is also dealt with.

Further more, the robot with the interaction
against the external agents through a set of mec-
hanical interactions are investigated. This inclu-
des frequently changing the configuration and
topology of system structure. In this situation the
number, types, and physical natures of mechanic-
al interactions are not invariant. The number of
contact points and contact mode distributions are
changing and new unilateral constraints are en-
tering into the analysis.

Next, multibody dynamics in biomechanical
system applications will be presented. This in-
cludes human biped walking simulation, motion
behavior of multi-pod animal, and human sports
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motion simulation and so on. In biomechanical
system, the target system is modeled as a floa-
ting body system, which has no fixed body with
ground. It is different from the case of mec-
hanisms and robot manipulators that have at
least one fixed base in ground. The prominent
feature of this type of problem is to consider the
contact constraint. The multibody dynamic ap-
plications to the humanoid robot are also de-
monstrated.

2. Closed Loop System

In investigations of typical closed loop mec-
hanical system, the mechanism of multibody con-
straint system has a long history (Lee, 1996).
Although the modern kinematics has its origin
with Franz Reuleaux (1875), yet it is only in the
1950s that the motion studies of three dimensional
mechanism have begun to take on analytical ap-
proach using mathematical techniques along with
the extensive use of computers.

Analytical study of spatial mechanisms receiv-
ed great impact upon the publication of influen-
tial works of Dimentberg (1948), Denavit and
Hatenberg (1955) introduced symbolic notation
for the complete description of the kinematic
properties of lower-pair mechanisms, and also
formulated general matrix closure equations for
the spatial mechanism.

The advent of large scale computers in the
1960s was crucial catalyst in the surge in research
on 3-D mechanism. Among them are the 4X4
matrix iterative method {Uicker, 1964), the vector
method (Chace, 1965), the dual number quar-
ternion method (Yang, 1964), the line geometry
method (Yuan, 1970) and the geometrical con-
figuration method (Wallace, 1970) for the five
bar spatial linkages.

Considerable works have been reported for de-
rivation on the input-output displacement equa-
tions for the six bar spatial linkages as a eight
degree polynomial in the half-tangent of output
angular displacement (Duffy, 1971). Duffy also
derived an input-output equations of degree 32 in
the half-tangent angle for the 7R spatial mec-
hanism which is the last linkage in 3-D with one

degree of freedom.

2.1 Closed loop solution by DCM method
and RTM methods

A method of displacement analysis of the four-
link spatial mechanism is developed. The results
through this analysis are exact solutions that can
be obtained without resorting to numerical or
iteration schemes. In this analysis, the position of
a link in a mechanism can be fully defined if its
direction and length are known. Therefore, this
analysis involves the calculation of the unknown
direction cosines and length of each link for a
given configuration of the mechanism. In finding
the direction cosines of the unknown unit vectors
involved for each link and rotating axis, two types
of coordinates, the global and the local, are gen-
erally used. Then, a direction cosine matrix be-
tween each local coordinate system and the global
coordinate is established. Thus, the unknown di-
rection cosines of the local coordinates, the links,
and the rotating axes are obtained in the global
coordinates. In this development, the direction
cosine matrices are used throughout the analysis.
As an illustration, the application of this method
to the study of four-link spatial mechanisms,
RGGR, will be presented.

2.1.1 Direction cosine matrix method for
RGGR mechanism

The RGGR four-link spatial mechanism as
shown in Fig. 1 is the generalization of the planar
four-bar mechanism. It is one of the most versa-
tile and practical configurations of three-dimen-
sional mechanisms and will function as a single
degree of freedom linkage with a passive degree
of freedom in the connection link. A schematic
diagram of an RGGR mechanism is shown in
Fig. 2.

The known quantities of the mechanism are
the lengths, &, &, b, &, the vector /4, the directions
of rotations, D1, p», the angles &, 7, a, B3, from the
construction of mechanism, and the input angle
6. The unknown quantities are I, I>, and /s,

2.1.2 Analysis of Input Link /;(8)
The method starts by choosing the appropriate
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Fig. 2 The schematic diagram of a RGGR
mechanism

local coordinates. Let the local coordinates x,
y1, 21 associated with p; with the origin at O be
chosen as follows. The x;-axis is set along the
known rotating axis p,, the y;-axis is set in the
plane of p; and /; and the z-axis follows the
right hand rule.

The direction cosines of the unit vectors p, fl,
and /4 in the local coordinates system associated
with p; are expressed in the parenthesis for each
unit vector as pi(1, 0, 0), /y(cos &, sin & cos 6,
sin &, sin 4), and /.(af,a5, 0), respectively.

To find [, in global coordinates, the direc-
tion cosine transformation matrix [ 7};] should be
defined.

With f; and /; are known in global coordina-
tes and local coordinates, we could obtain the
elements T11, Tiz, Ta1, T2, T3 and T3 Now the
rest of elements of can be found as their cofactors.
This property is a key solution factor of DCM
method. T3; is obtained as

Fig. 3 A local coordinates system and input angle

measurement

[Ts)
fhx sin 7 iu‘ﬁlx Cos 77 ﬁlyi4z—ﬁ1zf4y
:m 1:71)* sin i 1:43'_]?1y cos 77 élzl}x_,lj?lxl:u
Dz sin i 142 —D12C0OS 7 Plxhy - Plyl4x

Now /1 in global coordinates can be found as

{jlx, ily, ilz}T
=[Ty1{cos 7, sin & cos 8, sin £sin 8}7

(2)

where

Fx=(1/sin 7) {({ux—p1x cos 7)sin & cos 8

+ (Biylaz— Przles) sin & sin 8+ hrxsin 7 cos €}
f1y=<1/SinA77){<i4y_Z§1y cos 7)sin £ cos § 3

+ (Przlsx— Prulsc) sin & sin 8+ piy sin 7 cos £}
Fre=(1/sin 7){(£s2= P12 cos 7)sin & cos @

+ (Breley— Prylsx) sin € sin 8+ 1 sin 7 cos &)

Thus, [, is obtained as the function of the input
angle 6 by DCM method as /;=7(6).

2.1.3 Analysis of output link /5(¢)
In a similar procedure as /;(#), each elements
of /3 can be calculated as follows.

fsx=(1/sin B){([sx— Pax cos Bsin a cos ¢
+ (Boylaz— Poelsy) sin @ sin ¢+ Pax sin B cos @}

[sy=(1/sin B){(£4y— P2y cos B)sin @ cos ¢

+ (Dol ax— Poxlsc) sin a sin ¢+ Poy sin 8 cos @} (4)
[se=(1/sin B){(fsz— P2z cos B)sin a cos ¢

+ (Poxlss— Pavlax) sin e sin ¢+ Pz sin B cos '}

Is=£(¢)
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2.1.4 Closed form solution
The following steps are proceeded in order to
obtain a closed form solution.
L+h—h—1L=0 (5)
Taking dot product as, h+b=(—h+&+1)-
(—h+E+1D).
Then, we obtain,

B=RRE-2hb—2h - L+2k (6)
Substituting 4(8), 5(¢) into Eq. (6) yields the
general governing equation as,

Ci(0) cos ¢+ C:(8)sin ¢+ Cs(6) =0 (7)

where,
Ci(8) =2k, sin B sin a+ (24 k/sin  sin B)

({cos B— Py $») cos p—sin® 7} sin £ sin & cos §

~ Py (DX Pa)sin € sin @ cos Bsin §

+{($1+ P2 cos f—cos 7} sin 7 cos €sin a]
C:(8) =(24k/sin psin B)

(B (Po X {4) cos 7 sin & sin @ cos §

+{cos 7 cos B—(p1-$»)} sin Esin asin §

—Bu+ (B2 X Bu)sin 7 cos € sin o]
C(O) =D+ B+EB+1}

—24(sin £ sin 7 cos 8+ cos € cos 7)

+2Ll cos B cos a—2(hik/sin psin B)

[{cos B—(Pr+Ps) cos 7} sin £ sin S cos @ cos &

— P {PaX pa)sin € sin B cos e sin 4

+ (py+ po) sin 7 cos £ sin S cos a]

Using Half-tangent form as

_1—tan®*(¢/2) :
S P Ttani(g/2) ¢ ©
ngm 2tan(¢/2)
1+tan®(¢/2)

Eq. (7) becomes (Ci—Cs) X*P—2CX—(Ci+
C:) =0, where x=tan(¢/2). From which

—CEJC+HC-C
{ GG fooo

where = signs shows two possible solutions exist.
The DCM method has successfully applied to
RGCR, RCCC and RRGG.

¢=2tan™’

2.1.5 Reflection transformation method
(RTM)
The most difficult aspect of spatial mechanism’s

displacement analysis is the mathematically com-
plicated functional relationships between input
and output variables, especially for the five or
more link spatial mechanism. Therefore, the most
methods developed so far require numerical or
trial-and-error schemes for the mobility analysis
of spatial mechanisms, due to the high degree of
the polynomial in the input-output relationship
of the mechanism. This high-degree polynomial
represents many limit points on the travel of the
mechanism, which in turn makes it difficult to an-
alysis its mobility condition. In an effort to over-
come these difficulties, the RTM is developed for
the derivation of the reduced-degree of poly-
nomial as the closed form solution for the spatial
RG-group five-link mechanisms. By the reflec-
tion transformation (by symmetry), the solution
of the spatial mechanism is reduced order in half.
As an example of the planar 4-bar linkage, Fig.
4 is shown. We could easily obtain the functional
relationship in a parabolic equation as

Fig. 4 RTM of the planar 4-bar linkage

aC+bCo+c=0 (10)

By the reflection transformation, the order is re-
duced in half by the symmetry. As

o, —(AC)I+E—E
% 2LAC

For the spatial 4-bar mechanism shown in Fig. 5,

(11)

RTM is applied as follows ;
() e=(4Sa1Ca1, £1Sa1Se1, hCar, VT (12)
(B r=(La [ Yo J[X,0[Z, D h) e (13)
=[RT](4)« (14)

[RT] : Reflection Transformation matrix

By the reflection transformation, the reduction of
the order in half by the symmetry as
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(AC)%+ BS%s— B+ () 22+ bCas)
2%[35&3

Co, (15)

And output angles are
$p=0,% &r ( 1 6)

For the spatial 5-bar mechanism shown in Fig. 6,
the known quantities of the mechanism are the
lengths 4, b, &, 4, s, the vector 4, the directions
of rotations f, Py, the angles a1, @, @, @1, @5, from
the construction of mechanism. The input angle
01 is chosen as the angle between the two planes
formed by # and /3, and $ and /s in which the
ﬁlis-plane chosen as a reference. The angles 6,
&, 6, are the unknown output angles.

By the RTM, we had the following equations.

Gisin &+ Gz cos #+ Gssin & cos 6
+ Gisin &+ Gs cos &+ Gs (17)
=G7COS (9c24 +Gs COS (9c4+ G9

and

Fig. 6 The two reflection planes in the RGRRR
mechanism

Gm sin 6+ Gu CcOoS Hz‘f‘ GIZ

= (113 €08 e+ Gu (18

where the coefficients G;s are the known values
for given input angle 6. As arranging second
equation about the angle fc4 and substituting it
into the first equation, we can obtain as

(G4G123 —2G7Guo ( Gr— G14) - GsGme) sin &

+ (Gsta —2G7G11(G12— G14> - GBG'UGIS) cos G
+ GeGh— G (G~ Gis)*~ GsGi3(Gre— Gw)

- GQG123 + (Glezs - G?GIZZ) =0

Above equation is the two-degree polynomial
as the closed form solution of the RGRRR mec-
hanism. After all, this method reduces the 4 de-
grees of polynomial equation into a quadratic one

(19)

in the mechanism. Additionally, the unknown
angle &4 can be calculated in second equation
from the computed angle &, and 05 can be cal-
culated as follows,

= Ora— bra (20)

where the angles 0 and 6y can be computed
from the fact that the each y component in the
RTM equation. Finally, the unknown angle &
can be computed.

2.2 Dynamics of mechanisms

In the 1950s, the digital computers in industry
and engineering programs at university became
available increasingly. In the mechanism analysis
and synthesis, several programs were developed
at this period by Al Hall et al. at Purdue, C.
W. Mclarnan’s group at Ohio State, J. E. Shigley
et al. at Michigan, F. Fredenstein’s group at
Columbia, and J. Denavit and R. Hartenberg at
Northwestern. The graphical-based techniques
suggested by Burmester in 1876 were reformulat-
ed for computer solution. The computer became
more available to university researchers in the
early to mid [960s. Many researchers began to
utilize the power of the computer for solving
equations which were too tedious by either gra-
phical or slide rule techniques. Although there
was some initial success with analog and digital
computers in solving differential equations of
motion, numerical methods for integration, such
as Runge Kutta, caused the analog devices to be
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phased out. The early 1970s saw a spurt in ap-
plications on the computer. Codes such as IMP
(1973), developed by P. Sheth and J. Uicker at
the university of Wisconsin, and DRAM (1971)
and ADAMS (1973), developed at the university
of Michigan by D. Smith, N. Orlandea, and M.
Chace, had early roots in this decade. Also, com-
puter graphics applied to mechanism design re-
ceived its christening in the early 1970s by G.
Kaufman and KAM (1964), KIMAC (1979) and
DYMAC (1979) were coded by B. Paul in this
time. KINSYN (1977) was a custom-built pro-
gram at M. 1. T. and should be recognized as the
major milestone in kinematic design. The 1980s
has exhibited a burst in activity in mechanisms for
several reasons, and also has seen the beginning
of integration of mechanism analysis, synthesis,
and dynamics with other computer-aided design
areas, such as drafting, finite elements and simu-
lation. As an example, DADS (1981) was de-
veloped by E. Haug’s group, ROBSIM (1986) by
J. Davidson, LINCAGES (1986) by A. Erdman.
The future of the integration of the computer
mechanism design looks very exciting.

Several specific areas will see increased acti-
vities. These include : use of solid modelers for
the display and analysis; integration of mec-
hanism analysis and synthesis software into other
phases of computer-aided design and manufac-
ture ; many more custom applications to specific
needs of industry; more computer-assisted an-
alysis and design for machine elements: gears,
cams, indexers, etc.; better techniques for analy-
sis and simulation of more complex problem,
including clearances, deflections of links, fric-
tion, damping, etc.: the development of computer-
aided type synthesis techniques for inexperienc-
ed designers which will include expert systems
and artificial intelligence techniques ; the use of
more sophisticated graphics, including vector re-
fresh simulations ; increased development of mec-
hanism design software on micro- and desktop
computer ; use of the super computer that will
permit large-scale design and simulation.

A new scheme of Hybrid Method for multibody
displacement analysis is proposed in our research.
Based on the Hybrid Method, a new software pac-

kage ACUBE which deals with multibody mec-
hanical system is developed. The Hybrid Method
combines the analytical approach and the itera-
tive one. Up to now, most of multibody systems
are solved using the iterative displacement an-
alysis schemes. However, we developed the Hy-
brid Method in order to use the analytical scheme
in advance to depend on the iterative one.

In the analytical approach, the noble table of
number synthesis, called as Lee-Youm table is
developed. This table is the milestone to deter-
mine whether a given multibody mechanical sys-
tem is solved using its closed form solution or not
in Hybrid Method.

A large-scale kinematics and dynamics com-
puter code, ACUBE has been developed to im-
plement the theory presented both the kinematic
and dynamic analysis of the spatial mechanical
systems. The ACUBE software is computer pro-
gram built in IBM-PC so that it can be used to
model and predict the motion of a variety of real
world mechanical systems. Using a set of data that
describes the machine to be modeled, ACUBE
builds a mathematical model of the real system
that performs kinematic analysis, dynamic force
analysis (or kinematically driven dynamic an-

Table 1 Lee-Youm table —the kinds of zero de-
gree-of—freedom kinematic chains having
the closed form solutions based on the six
lower pairs

No. links

Kinds

3R+3P
2R+3P+1S
IR+3P+2S

3P+3S

2R+2P+1IC
5 IR+2P+18S+1C
2P+2S8+1C

IR+1P+2C
1P418+2C
3R+1G
2R+ 1P+[1G, IF]
IR+2P+1G, IR+1P+IS+I1F
3P+1G, IP+2S+1F

IR+1C+[1G,IF]
1P+1C+1G, IS+1CH+1F, 3C
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alysis), and dynamic motion analysis (or initial
value problem).

3. Open Loop System

In 1970s, the robot applications in industry
were utilized successfully and in 1980s the robo-
tics became one of the attractive topics for the
multibody dynamic community. The earlier stage
robots such as Puma, Milacron, ABB, Fanuc,
P200, Adept, etc were the open loop mechanical
system. However, the redundant open loop system
became more popular in dynamics and control
aspects in research community. A robotic mani-
pulator which is open loop system is called (kine-
matically) redundant if it possesses more de-
grees of freedom than is necessary for performing
a specified task. The extra degrees of freedom,
namely redundancy, of a robotic manipulator are
therefore determined relative to the particular task
to be performed.

Redundancy in a manipulator structure yields
increased dexterity and versatility for performing
a task due to the infinite number of joint mo-
tions called self-motion or null-motion, which
result in no end-effector motion. In order to take
full advantage of the capabilities of redundant
manipulators, effective control schemes should be
developed to utilize the redundancy in some use-
ful manner. At first the kinematic redundancy
was utilized to avoid various kinematic limita-
tions from which conventional non-redundant
ones suffers, e.g. to stay within joint travel limits
(Liegeois, 1977) to avoid so-called kinematic
singularity (Yoshikawa, 1984), to improve con-
nectivity of the task space (Borrel and Liegeois,
1986), for obstacle avoidance (Maciejewski and
Klein, 1985 ; Khatib, 1986). Later there were se-
veral approaches to utilize redundancy for the
control effort minimization (Hollerbach and Suh,
1987). During the past decades, redundant mani-
pulators have been the subject of considerable
research, and several methods have been sug-
gested to resolve the redundancy.

3.1 Kinematic analysis of redundancy
In particular inverse kinematic algorithms for

redundant manipulators were called the kinema-
tic resolutions of redundancy. Literature shows
that there are three main classes for kinematic
resolutions of redundancy (Nenchev, 1989). Basic
equations about kinematic resolutions of redun-
dancy is as follows:

p=J(a) ¢, VER®, 4€R" (21)
where J{g) is a Jacobian matrix of 6 X N

N=6 . non-redundant
N>6 . redundant
N<6 . deficient

The solution about upper equation has the form
as

=G p+UI-G(@) (@) z (22)

where G(g) is a generalized inverse of J(g) of
nXm. First term in the right equation (22) is
called as a particular solution and second term as
a homogeneous solution.

In obtaining the homogeneous solution, the
following kinematic control schemes have been
introduced.

3.1.1 Resolved motion rate method

Whitney (1972) suggested first the use of pseu-
doinverse or Moore-Penrose inverse (Ben-Israel,
1980) of the manipulator Jacobian matrix for
the kinematic control of redundant manipula-
tors. The pseudoinverse is one of the types of
generalized inverse that has a least squares pro-
perty (Ben-Israel, 1980). But, in the pseudoin-
verse control proposed by Whitney, the pseudoin-
verse is one of the minimum-norm generalized
inverses that minimize the sum of squares of
joint velocities. Presumably any joint is prevented
from moving too fast, leading to a more con-
trollable motion. It is also presumed that squar-
ed velocities are approximately related to kinetic
energy, which would then also be approximately
minimized.

Liegeois (1977) proposed a modification of the
pseudoinverse approach, named resolved motion
method, by using the general solution to joint
velocity which is composed of the pseudoinverse
solution and the homogeneous solution corre-
sponding to net-motion and null-motion of the
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end-effector, respectively. Additionally, he spec-
ified the homogeneous solution for optimizing a
scalar performance function onto the null space of
the joint variables by projecting the gradient
vector of this function onto the null space of the
Jacobian matrix, and demonstrated first the per-
formance function for the criterion of avoidance
of joint limits. Klein and Huang (1983) showed
that the pseudoinverse control is not conserva-
tive, that is, repetitive motions planned with the
pseudoinverse alone do not return at a given
end-effector position to the same joint configura-
tion. It was recognized that weighted pseudoin-
verses with constant matrices are not integrable.

3.1.2 Task space extension method

An alternative approach to the kinematic con-
trol of redundant manipulators, called the ex-
tended jacobian method, was proposed. Baillieul
et al. (1984) made repetitive motions planned with
the resolved motion method conservative by com-
bining null space motions with the pseudoin-
verse solution via the extended jacobian method
(Ballieul, 1985). This method obtains the addi-
tional equations of which number equals to the
redundancy by using the orthogonality between
the null space vectors of the Jacobian matrix and
the gradient vector of a performance function.
Then the extended Jacobian matrix is obtained by
differentiating the augmented kinematic equations
which are composed of the kinematic equations
and the additional equations.

The extended Jacobian method, which is se-
emed to be velocity-based, is considered as being
an application of Newton’s method and thus as a
position based method. A Newton-Raphson nu-
merical procedure was developed by Oh et al.
(1984), which is based on a composite Jacobian
which includes rows for all members under con-
straint. Benhabib et al.(1985) presented a new
algorithm for solving the inverse kinematics of
redundant manipulators using the method of
generalized inverse kinematics based on a mo-
dified Newton-Raphson iterative method. To
provide the exact equilibrium state for the re-
solved motion method, Chang (1987) presented
formulations for converting a minimization cri-

terion into constraint function. Essentially, the
constraint is that the projection of the gradient of
the minimization criterion onto the null space of
the manipulator Jacobian must be zero. Wampler
(1987) proposed the inverse function method bas-
ed on a single inverse function giving the joint
coordinates for each point in some subset of the
task (or operational) space. In constructing such
a function, the redundancy may be used to reduce
joint speeds and avoid known obstacles. For a
very general class of kinematic inversion algo-
rithm, Baker and Wampler (1988) proved that
tracking algorithms which use additional con-
straint functions to invert the kinematics on re-
dundant manipulators produce cyclic behavior,
if the subset of the operational space in which
paths can be tracked is simply connected. In order
to determine a priori whether a local kinematic
control strategy guarantees repeatability or not,
Shamir and Yomdin (1988) deduced its global
properties as well as its local properties by consi-
dering integral surfaces for a distribution in the
joint space. This yields a necessary and sufficient
condition, in terms of Lie brackets, for a control
to be repeatable. V )

Seraji (1989) presented the configuration con-
trol of redundant manipulators in which the re-
dundancy is utilized for control of the mani-
pulator configuration directly in task space. A set
of kinematic functions in joint space is chosen to
reflect the desired additional task that will be
performed due to the redundancy. The kinematic
functions can be viewed as a parameterization of
self-motion. The end-effector cartesian coordina-
tes and the kinematic functions are combined to
form a set of “Configuration variables” which
describe the physical configuration of the entire
manipulator in the task space.

3.1.3 Task priority based method

Maciejewski and Kiein (1985) presented a new
obstacle avoidance approach by using the task-
priority based on kinematic control. This ap-
proach is to identify for each period in time the
point on the manipulator that is closest to an
obstacle, termed the obstacle avoidance point,
and assign to it a desired velocity component in a
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direction that is directly away from the obstacle
surface. However, this obstacle avoidance algo-
rithm requires of knowing the position on the
manipulator of the obstacle avoidance point in
real-time it seems that tracking the motions of
this point will be fairly complicated.

Hanafusa et al.(1981) and Nakamura et al.
(1987) used the homogeneous solution of the
resolved motion method to impose a priority to
manipulation variables. For the tasks with the
order priority, if it is impossible to perform all
of subtasks completely because of the degeneracy
or the shortage of degrees of freedom, this task
priority based on kinematic control performs the
most significant sub task preferentially and the
less important subtasks using the remaining de-
grees of freedom.

3.2 Dynamic analysis of redundancy and

control

Many researchers have discussed how to re-
solve redundancy at the kinematic level. However,
the dynamic resolution of redundancy which is
taking account of manipulator dynamics shoud
be discussed in comparison with the kinematic
resolution of redundancy in spite of the fact that
robotic manipulators are actually controlled by
specifying the joint torques to track a defined
end-effector trajectory. To incorporate a gener-
alized inverse (Ben-Israel, 1980) into the mani-
pulator dynamics, the pseudoinverse must be for-
mulated in terms of accelerations. Khatlb (1983,
1987) was one of the first researchers to do this,
in his case using the inertia- weighted pseudoin-
verse which truly minimizes instantaneous kinetic
energy, while the pseudoinverse minimizes the
sum of squares of joint velocities and thus ap-
proximately minimizes the kinetic energy. Vuko-
bratovic and Kircanski (1984) broadened the
method of Khatib to include energetic model
and generated nominal joint trajectory so as to be
optimal with respect to total energy consumption
of the actuators.

Many dynamic control algorithms were design-
ed based on dynamic resolution method and con-
ventional dynamic “control algorithms for non
redundant manipulators (Khatib, 1987). Hirose

and Ma (1989) proposed a dynamic control me-
thod, named “Redundancy Decomposition Con-
trol (RDC),” which decomposes the degrees-
of-freedom of a redundant manipulator into a
subset of non-redundant combinations. Hsu et
al.(1989) proposed a dynamic feedback control
law that guarantees the tracking of a desired
end-effector trajectory and provides redundancy
resolution by making the self-motion of a redun-
dant manipulator along the projection of a given
arbitrary vector field (e.g., the gradient vector of
a performance function) onto the null space of
the manipulator Jacobian.

Historically considered, dynamic treatment of
kinematic redundancy was initiated by the mo-
tivation to minimize inverse dynamic torque to
realize the task motion (Hollerbach and Suh,
1987). In order to incorporate the manipulator
dynamics, Hollerbach and Suh (1987) resolved
the redundancy at the acceleration level rather
than at the velocity level, and then complemented
the minimum-norm acceleration, i.e., the pseu-
doinverse solution by using a homogeneous (or
null space) acceleration to locally minimize the
norm of joint torque. Kazerounian and Nedun-
gadi (1987) proposed the homogeneous accelera-
tion term induced by Lagrange’s undetermined
coefficient method for the optimization of the
joint driving force. A formalism for global tor-
que optimization problem was introduced by
Nakamura and Hanafusa (1987). Considering
this problem as an ordinary optimal control
problem, they applied the Pontryagin’s Maxi-
mun Principle to the inverse kinematics which
was resolved at the acceleration level. Suh and
Hollerbach (1987) presented the global method
of torque optimization which parameterized the
redundancy of a manipulator and applied the
calculus of Variations. This formulation requires
an explicit inverse kinematic solutions and extra
time derivative of the joint variables.

Because self-motion also evolves by its own
dynamical equations and the dynamics can not
be trivially specified, it will be shown that the
trial to minimize joint torque using.kinematic
redundancy produced a puzzling phenomenon,
which was named the torque instability. Nedun-
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gadi and Kazerounian (1989) pointed out that it
is due to local optimization characteristics of
joint torque minimization scheme. Maciejewski
(1991) analyzed the kinetic effects of a homo-
geneous acceleration for the local torque mini-
mization method (Hollerbach, 1987), and pre-
sented a kinematic condition to identify regions of
stability and instability for this method.

The first paper dealing with self-motion dyna-
mics explicitly appeared in Park et al.(1996).
Park et al. described self-motion dynamics based
on kinematically decoupled joint space decom-
position and suggested the control method which
puts equal emphasis on self~-motion dynamic con-
trol as well as the task dynamic control and the
algorithm which removes torque instability. In
spite of many kinematical successes, two diffi-
culties in dynamic control of kinematically re-
dundant manipulator exist. One of the problems
is the mentioned torque instability, and the other
problem is difficulty in stabilizing self-motion
(Klein and Chirco,1987 ; Luca, 1989 ; Oriolo,
1994) .

4. Closed & Open Loop (Switching)
Systems

In this section multibody dynamic system
which has both closed and open discontinuous
system is discussed. The analysis method of the
multibody dynamic system has been an indepen-
dent modeling about each case of system state
(open/closed) . This method has an advantage of
simplicity in modeling but has a disadvantage
that investigator must remodel the system dyna-
mics for each varying system environment (con-
tact/detachment with external environment). A
new method, “dynamical balance” is proposed
through which method the system dynamics could
be modeled comprehensively according to the
change in contact with situation. As an example
of the switching system, human gait of biomec-
hanics and humanoid robot which act and react
with environment through contact are introduced.

4.1 Human gait study in biomechanics
Human gait is grossly divided into two phases,

single support phase and double support phase.
Single support phase means that human is walk-
ing with his single leg and with remaining leg
swinging in the air to be an open loop system.
Double support phase means that both of foots
are in contact with the ground so that the gait
system becomes closed loop system.

Dynamic analysis in biomechanics begins with
experiment and not with the model analysis of
the human system itself. As an example, in order
to obtain a torque data in joints of human walk-
ing, measurements about inertia data for each
body segments and calculating the mass center
position/velocity during walking are performed.
Finally through the free body diagrams about
joint torque and forces are calculated. Also to
obtain a contact force between foot and ground,

Fig. 7 Open & closed loop in human walking

Fig. 8 The bone stereograph of human walking
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force platform is used to acquire a data during
human walking.

4.2 Humanoid robot

In robotics, the humanoid robot is a typical
example of multibody dynamic system of closed &
open phase change. The dynamics of the huma-
noid includes a contact, vibration, redundant sys-
tem problem. Especially, humanoid system chan-
ges its kinematic loop as open and closed which
is a switching dynamic system through walking
and grasping an environment object with the
hand.

In the following section, the method dynamical
balance (Park, 2004) which could efficiently an-
alyze a switching dynamic system as a humanoid.

4.3 Multibody system dynamics

Multibody systems have been given much re-
search effort during the last two decades. It seems
that a recent innovation was demanded by mainly
three application areas : computer animation, vir-
tual reality, and robotics. It is evident that rela-

%

&

Subsystem | Subsystem 2 —_ .
(Dynamics known) + (Dynamics known) —— Composite System

Fig. 10 Change of dynamics in humanoid task

tively complete understanding of dynamic beha-
vior of multibody systems and proper dynamics-
theoretical approach improves the reality of vir-
tual dynamic agents. In robotics area, greater
interest lies in motion and manipulation planning
consistent with multibody dynamic behaviors.
With the advent of new platforms such as huma-
noids and dexterous robotic hands, the center—
of~mass of research has seemed to move to multi-
body systems with continuously varying relati-
vely fixed topology and system configuration
such as open-loop manipulators and closed-loop
mechanisms. '

Just with the minimalistic attitude, every multi-
body systems can be considered to be comprised
of a number of single bodies, many instances of
bilateral constraints and unilateral constraints.
The dynamics of a single body is completed theo-
retically and is also believed so practically. It
is described by Newton-Euler equations of mo-
tion, which is of the form of second-order ordi-
nary differential equation (ODE) in generalized
coordinate (GC) vector. Then, a set of indepen-
dent bodies is described by a system of decoupled
ODE:s in aggregate of every GC vector.

Suppose that there are some active bilateral
constraints. They can be represented as a system
of algebraic equations in GC and/or GC velo-
city vector. Any attempts to violate those are
negated by enforcing constraint forces. Coupled
with these constraint forces, the system of single
bodies under bilateral constraints are effectively
described by a set of differential-algebraic equa-
tions (DAEs). Resorting to a variety of DAE,
one can solve bilaterally-constrained multibody
system (MBS) dynamics. Many bodies which ha-
ve been independent of each other become regu-
lated by bilateral constraints, effectively constitu-
ting a smaller number of articulated multibody
systems. It is worth noting that some of them in-
volve closed-loop in connectivity of the bodies.

Recently, this philosophy has been extended to
deal with unilaterally constrained dynamic sys-
tems. One of the main tools is the linear com-
(LCP). It derives
from the fact that the constraint force is induced

plementarity programming

only when a unilateral constraint is active, or
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vice versa. It is regarded that the LCP formu-
lation of unilateral constraints is the mathema-
tical encapsulation of every possible cases. One
should be aware that the treatment of unilateral
constraints in multibody dynamics context is not
completed at all. Rather, it is still evolving. In
particular, if many contacts is involved between
many rigid body pairs and the contact force is
supported by Coulomb friction model, the solu-
tion technique is not completed in theory. Most
current approaches based on complementarity
formulation employ an approximation to render
problem solvable by using LCP solver.

There is another sophisticated phenomenon re-
lated with impact in dealing with unilateral con-
straints. This behavior is quite frequent under
unilateral constraint as the constraints are not
constantly active. The system configuration chan-
ges intermittently as it evolves. Main difficulty of
impact theory lies in the fact that the rigid body
assumption is prone to fail at the impact regime.
Hence, the rigid-body impact theory is only an
approximation of complex physical processes,
involving wave propagation and infinitesimal
deformations, which actually occurs during im-
pact. Further, the approximation is much cru-
der. Nevertheless, the net effect of impact process
could be summarized as an abrupt velocity jump.
Hence, once the post~impact velocities have been
obtained, one can continue without impact for the
time being. A greater difficulty is encountered in
analysis when an articulated multibody system
(AMBS), already subject to many active unila-
teral and bilateral constraints, experiences multi-
ple, possibly simultaneous, impacts. If frictional
effect is not negligible, which is indeed the case
for almost every problems, the difficulty becomes
more exaggerated. Within our knowledge, it does
not seem that there exists a complete mathe-
matical model or tool to deal with such a gener-
al problem, which is favorable from the rigid-
body dynamics-theoretic viewpoint. Every avail-
able method relies on its own approximation and
can solve only a class of problems.

4.4 Principle of dynamical balance
We have recently proposed a new formalism for

multibody dynamics within the context of com-
position of subsystem dynamics. Composition of
subsystem dynamics refers to a sort of mathe-
matical operations which generate valid equa-
tions of motion for a composite system, consisting
of two interacting multibody subsystems. It is
assumed that the subsystem dynamics are already
known. Then the question is how to compose two
subsystem dynamics to derive the composite sys-
tem dynamics 7

To this end, first we develop the Lie group
theoretic formulation of rigid body kinematics
and dynamics. Within the formulation, two most
beneficial geometric entities are the body twists
and wrenches, which are velocity- and force-
equivalents in particle kinematics and dynamics.
The notion of twists and wrenches provides us
with a succinct and consistent mean to express
spatial rigid body motion. In addition, it facili-
tates systematical joint modeling at the twist (or
velocity) level, not the homogeneous transform
{(or position) level.

We concretize the notion of dynamical balance
between two subsystems. To do this, the concept
of d’Alembertian wrenches and torques are de-
vised to encapsulate, or abstract, subsystem dyna-
mics. We propose the principle of dynamical
balance that the d’Alembertian wrenches and
torques of two subsystems should be balanced
for a composite system. In other words, composite
system dynamics is obtained by taking dynamical
balance between d’Alembertian wrenches and
torques of two subsystems. The principle is quite
unique in that the dynamical balance equation is
derived just from the dual expression of kine-
matical constraints due to mechanical interaction.
We will prove the principle using d’Alembert’s
principle later in this article.

It is worth noting that the dynamical balance
equation is a sort of encapsulated version of the

AL 8T
-

(a) Fixed loading
Fig. 11

(b) Jointed loading
Loading
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equations of motion for the system. The d’Alem-
bertian wrench encapsulates the details of dyna-
mics of every individual system. In other words,
d’Alembertian wrench is the abstraction of the
system dynamics.

As long as the system dynamics is known, one
can obtain the concrete expression of d’Alem-
bertian wrench by rearranging the dynamics.
Then, the dynamical balance yields the true equa-
tions of motion for the system, once the d’Alem-
bertian wrench for the system is substituted.

44.1 Relative twist formulation of geomet-

ric constraints

There are many kinds of geometric constraints
on motion of multibody systems. For example, a
body of an AMBS can be joined to another body
of a different AMBS, composing a larger AMBS
(called joining); a body of an AMBS can be
connected to the ground (called earthing); when
a body of an AMBS is joined to another body
of the same AMBS, a kinematic loop is created
(called looping); or the like.

All of the exemplifying constraints share one
common aspect that relative motion between two
bodies is restrained effectively. Hence, the afore-
mentioned geometrical constraints can be for-
mulated in terms of the homogeneous transform
and the associated relative body twist. Specific-
ally, for any two bodies @ and 3, the constraint
can be expressed as a parameterized homogeneous
transform ““*Ty,, where {a@LB} and {BLa},
called the loading frames, are body-fixed frames
attached to body @ and j, respectively.

The relative body twist between two loading
frames {@L B} and {BLa} provides the gener-
alized notion of the relative velocity of two points
in point kinematics. It is related with the time-
derivative of the homogeneous transform between
two frames, but not directly. Let us denote the
relative twist by ““ Vo= (““v a0, ™0 ae). As
mentioned, constraints restrain the relative body
twist of two bodies. Basically, the relative twist is
the difference between the body twists of the two
bodies. This is expressed succinctly as

aL# 1//?La = BAdEI}a I//i - aLﬂAd;Lla aAd;b? Va (23>

where the coordinate transformation of body
twists is done by the adjoint transformation de-
fined as follows.

General geometric constraints on relative mo-
tion of two bodies are expressed as

HToe=T,(qs 1) (24)

Hence, feasible relative body twists are parame-
terized by the joint velocity ¢; as

Vua=E;(q;, t)4;+E: (g, t) (25)

When the motion constraint (25) is made use of,
the relative body twist (23) yields

Ve="Ad7' V. +*AdseEid; +PAdgaE:  (26)

This is called the loading constraint between two
bodies & and S.

44.2 Joining two subsystems

One effect of geometric constraints is to kine-
matically restrain the relative motion. The other
effect of dynamical significance is the so-called
dynamical balance of system dynamics. Consider
the jointing operation on two subsystem dyna-
mics. Provided that each subsystem dynamics is
known, joining operation formulates the system
dynamics of a larger system composed of two
subsystems. Fig. 12 shows one such example. Let
us assume jointed loading between body @ and 5.
Consequently, we are dealing with the composite
system shown in Fig. 13. The loading imposes the
loading constraint with £,=0, rewritten below

wzaAdEI Va +BAdﬂJaEq (27)

Recognize that the loading constraint is written
with the body twists of intermediate bodies, not
directly with the GC vectors themselves. Using
the joint index partition, the jointed-loading (27)
can be regarded as a constraint between Vi, ¢,
Vs, g2 and ¢. In particular, it is written in the
following form

Vo=2Adg Adz* Vi +2Ad“AdG G o1 e

+2AdpﬁAdB!aEd —zAdsz:Bl}Z:a (28>

which is the canonical form of the loading con-
straint in composition.
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Fig. 13 Extended systems

Now, we can state the basic version of the
principle of dynamical balance for joining two

subsystem dynamics.

Theorem 1 (Principle of Dynamical Balance)
Under the loading constraint, e.g. (28), between
two bodies of two subsystems, the composite
system should satisfy the balance condition, be-
tween d’Alembertian wrenches and torques of two
subsystems, defined by the dual expression of the

constraint
F'=—'Ad;""Ad:"*AdI F> (29a)
ote =— Gl ."Ad; PAd} F (29b)
a'e =0 (29¢)
r=—ET"AdiAdRF (294d)
&'s =Gs °Adi FY (29)
@ =0 (291)

Dynamical balance is described as the dual ex-
pression of the loading constraint in terms of
d’Alembertian wrenches, associated with the body
twists, and torque, associated with the joint ve-
locity.

443 Notion of d’Alembertian wrenches and
torques

Consider a single rigid body B which can
move by the body twist Vz under the influence
of the body wrench F3. Assume that the body
takes static equilibrium. Then it is easy to see
that the net body wrench Fy should be zero.
The null body wrench is the necessary and suffi-
cient condition to static equilibrium for a single
rigid body. This condition is called the statical
balance

Fs=0 (30)

The term ‘balance’ reflects the idea that possibly
many wrenches derived from different sources are
canceling out each other, which leads to zero net
wrench. Now assume that the net wrench Fj is
not zero. Obviously statical equilibrium cannot
be sustained, and the body begins to move. It is
the equations of motion that describes the ensuing
motion of the body exactly. For a single rigid
body, it is written as

FB=ABVB+BBVB (31)

From a different perspective, the equations of
motion are just the statement of balance between
the statically unbalanced, hence nonzero, wrench
Fs and the wrench-equivalent induced by dyna-
mical motion of the body. The right-hand side
expression AgV + BV corresponds to the in-
duced dynamical wrench. Just as statical balance
is written in terms of the net wrench, the so-
called d’Alembertian wrench enables us to ex-
press dynamical balance succinctly as

F#=0 (32)

The d’Alembertian wrench is denoted by the
same notation as the body wrench except the
superscript “*’. The notational similarity is inten-
tionally devised in order to develop systematic-
ally the principle of dynamical balance. Roughly
speaking, the principle asserts that any statical
balance equation expresses dynamical balance by
replacing the involved wrenches with their re-
spective d’Alembertian wrenches. By the nota-
tional convention, this is done by simply atta-
ching *’ to each body wrench. For the system in
consideration, statical balance is expressed by



Multibody Dynamics of Closed, Open, and Switching Loop Mechanical Systems 251

Eq. (30). When the involved body wrench Fjp
is replaced with its d’Alembertian wrench Fy¥,
this yields the equation, i.e. Eq. (32), describing
dynamical balance condition.

It is worth noting that the dynamical balance
equation is a sort of encapsulated version of
the equations of motion for the system. The

d’Alembertian wrench encapsulates the details of .

dynamics of every individual system. In other
words, d’Alembertian wrench is the abstraction
of the system dynamics. As long as the system
dynamics is known, one can obtain the concrete
expression of d’Alembertian wrench by rearran-
ging the dynamics. For instance, as the equa-
tions of motion of the single body is Eq. (31),
the d’Alembertian wrench of the system is written
as

Fék:FB_ABVB_BBI/B (33)

Then, the dynamical balance equation Eq. (32)
yields the true equations of motion for the system,
once the d’Alembertian wrench for the system is
substituted.

The notion of d’Alembertian wrench might
be regarded as a restatement of the celebrated
d’Alembert’s principle, which states that the in-
ertial acceleration is equivalent to the force. The
principle is expressed for this simple example as

FB+FB:O (34)
where,
ﬁB:_ABVB—BBVB (35)

However, the notion of dynamical balance is
distinctive in expressing the equations of motion
of a system in the following sense. It can be
said that the d’Alembert’s principle originates
from the system dynamics. We may say, at least
for this simple system, that the d’Alembert’s prin-
ciple Eq. (34) is a restatement of the Newton-
Euler equations of motion Eq. (31). The concept
of statical balance has nothing to do with the
principle. On the other hand, the notion of dy-
namical balance is deeply related with that of
statical balance. Once the statical balance equa-
tion is established, the expression of dynamical

balance is also obtained by the same equation by
replacing the involved wrenches with the d’Alem-
bertian wrenches. The latter operation is called
promoting the wrenches (to d’Alembertian). One
of the reasons why we cling to the notion of
statical balance is that it is much easier to for-
mulate than the equations of motion itself be-
cause it is just a dual statement of available
kinematical constraints. This idea is of great sig-
nificance within the context of composing two
subsystem dynamics into the composite dynamics.
Once we formulate kinematical constraints for
the system, we can express the dynamical balance,
and the equation of motion is derived in a
straightforward manner.

Consider an AMBS consisting of K bodies
interconnected by N joints. Denote the body
wrench applied to the body %2 by Fr&R®, and
the joint torque at the joint j by ;ER™. Sup-
pose that the system is described using the inde-
pendent GC velocity vector and hence uncon-
strained, consisting of V€ R®, the body twist of
a base body, and the joint velocity vector §=
(af, 41, -
motion is formally written as

-, ¢k). The closed-form equations of

WF+BT=M{ V]+C[ V] (36)
q q

where F=(F{, F{, -, F£)TER* and r= (4,
o, -, ) TER™ ; the matrices W and B are
the influence coefficient matrices; the matrices
M and C correspond to the generalized inertia
matrix and the generalized coriolis’ and centri-
fugal matrix. Gravitational forces are all incor-
porated in the term F, that is, each F} is the
sum of the gravitational forces applying to the
body % and the other wrenches.

The d’Alembertian wrenches and torques are
obtained from the equations of motion of the
system Eq. (36). For the sake of effective descrip-
tion, we will make advantage of the structural
properties of W and B in Eq. (36). Then, one
can define the d’Alembertian wrench and torque
of the subsystem by

{f_‘f]=WF+Br—M[ Z}—C[ Z] (37)
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or

Ft=Fi+ 3 WooFa— MooV —Morii-~
_COOV._ C01Q1"'

o= r,-+§1 WieFo— M V— Mgy
—CjO V_ leq.l'“

5. Conclusions

In this paper, the development of multibody
dynamics are reviewed as considering the type of
dynamic systems and its applications. The dyna-
mic systems are classified as the closed, open loop
system, and switching system. In case of closed
loop system, we discuss mechanical systems with
completely constrained 3-D mechanism and some
of the research activities. Also, the multibody dy-
namics of the open loop mechanical system in
the areas of the robotics partially constrained are
reviewed. Lastly, the switching system are present-
ed as focusing the dynamics of articulated multi-
link system, invariant topology in system struc-
ture, and the multi-body dynamics in biomec-
hanical system applications. In an effort to simu-
late the gait of the humanoid robot, the formulat-
ion of the dynamical balance is investigated.
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