• Title/Summary/Keyword: Closed-loop observer

Search Result 145, Processing Time 0.032 seconds

Adaptive Fuzzy Control with Reduced Complexity for Robot Manipulators (구조적 복잡성을 감소시킨 로봇 머니퓰레이터 적응 퍼지 제어)

  • Jang, Jin-Su;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1775-1776
    • /
    • 2008
  • This paper presents a adaptive fuzzy control suitable for motion control of multi-link robot manipulators with uncertainties. When joint velocities are available, full state adaptive fuzzy feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the unknown input gain matrix. The proposed controller is robust against uncertainties and external disturbances. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.

  • PDF

Asmptotic Decoupled Control of Induction Motors for High Dynamic Performance (고성능 응답을 위한 유도 전동기의 근사적 비간섭 제어)

  • Kim, Dong-Il;Ko, Myoung-Sam;Ha, In-Joong;Park, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.921-925
    • /
    • 1988
  • An attractive approach to speed of induction motors is to achieve full linearization via appropriate feedback. However, the prior results toward this direction are based on full feedback. In practice, rotor fluxes are not directly measurable but can be estimated using observers. We propose a nonlinear feedback controller with an observer. As t${\rightarrow}{\infty}$, the closed-loop system with our controller becomes as if it were a linearly decoupled system. We provide the stability analysis of our control method. Simulation and experimental results are also included to demonstrate the practical significance of our results.

  • PDF

Online Compensation of Parameter Variation Effects for Robust Interior PM Synchronous Motor Drives

  • Shrestha, Rajendra L.;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.713-718
    • /
    • 2011
  • This paper presents an online voltage disturbance estimator to achieve precise torque control of IPMSMs over a high speed operating region. The proposed design has a type of state-filter based on a Luenburger-style closed loop stator current vector observer. Utilizing the frequency response plot (FRF) approach, the estimation accuracy and the parameter sensitivities are analyzed. Accurate torque control and improved efficiency are provided with the decoupling of the effect of the parameter variations. The feasibility of the presented idea is verified by laboratory experiments.

Papers : Improvement of Tracking Performance for Re - Entry Trajectory via the Disturbance Observer (논문 : 외란 관측기를 이용한 대기권 재진입 궤적 추종성능 향상)

  • Lee,Dae-U;Jo,Gyeom-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2002
  • In the re-entry comtrol system, errors apt to induce because the time deriviative of drag acceleration is analytically estimated. Still more, the difficulty of estimation of th exact drag coefficient in hypersonic velocity and the non-reality of the scale height cause a steady-state drag errer. In the Space-Shuttle, a steady-state drag error is reduced by the addition of the integral term of drag acceleation error into the control system. This method, however, induces a difficulties in respect to the modern controller composition due to the multi-poles in a closed-loop system. Thus, this paper proposes the additional method of the disturbance observer. This reduces the steady-state drag error according to the following by the analytic calculation, and then creates the new drag acceleration time derivative using the estimated error. The performance of the re-entry control system is verified about 32 refernce trajectories.

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction (직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Hwang, Don-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

Model Matching for Input/Output Asynchronous Machines Using Output Equivalent Machines (출력 등가 머신을 이용한 비동기 순차 머신의 모델 정합)

  • Park, Yong Kuk;Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.173-181
    • /
    • 2014
  • This paper addresses the problem of model matching control for a class of systems modeled as input/output asynchronous sequential machines. Based on the feedback control scheme, we design a corrective controller that compensates the behavior of the closed-loop system so as to match a reference model. Whereas the former studies use state observers and the output burst for designing a controller, the present research needs neither the observer nor the output burst in controller design. We define the 'output equivalent machine' of the considered machine to describe the existence condition and the construction algorithm for the proposed controller. A case study is provided to show the operation of the proposed corrective controller.

A Rotating Chamber Mechanism and Its Controller for CTA Guns (CTA 자동포용 회전 약실 기구 및 제어기)

  • Lim, S.;Kim, K.K.;Shim, J.S.;Kil, S.J.;Lee, G.H.;Cha, G.U.;Cho, C.K.;Hong, S.K.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.50-59
    • /
    • 2006
  • Lately, there exist growing demands for the use of CTAs(Cased Telescoped Ammunitions) to increase the firepower of mid-calibre automatic guns despite spatial limitations of armament. In this paper, for automatic CTA guns a rotating chamber mechanism is designed based on parallel index concept. Via dynamic simulations it proves capable of smooth operation even at as high a firing rate as 200spm. Subsequently, motor controllers are synthesized to drive the chamber at any constant speed and also to control positions in the presence of large disturbances caused by the intermittently-rotating load. It is remarkable that we successfully adopted a disturbance observer to treat disturbances only with a moderate bandwidth of the closed-loop system.

Approximation-Based Decentralized Adaptive Output-Feedback Control for Nonlinear Interconnected Time-Delay Systems (비선형 상호 연결된 시간 지연 시스템을 위한 함수 예측 기법에 기반한 분산 적응 출력 궤환 제어)

  • Yoo, Sung-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.174-180
    • /
    • 2012
  • This paper proposes a decentralized adaptive output-feedback controller design for nonlinear interconnected systems with unknown time delays. The interaction terms with unknown delays are related to all states of subsystems. The time-delayed functions are compensated by using appropriate Lyapunov-Krasovskii functionals and function approximation technique. The observer dynamic surface design technique is employed to design the proposed memoryless local controller for each subsystem. In addition, we prove that all signals in the closed-loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin.