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Abstract

An attractive appromach to speed of induction
motors i to achieve full linearization via appro-
priate feedback.However, the prior results to-
ward this direction are based on full feedback.
In practice, rotor fluxes are not directly measur-
able but can be eatimated using observers., We
propose a nonlinear feedback controller with san
observer. As t+ @, the closed-loop system with
our coniroller becomes as if it were a linearly
decoupled system. We provide the stability anal-
ysis of our control method. Simulation and ex-
perimental results are also included to demon-
strate the practical significance of our results.

L.Introduction

The recenti rapid growth in microprocessor
technologies facilitates application of computa~
tionally complex control methods to be applied in
many industrial problems. Since the so called
vector control pioneered by Blaschke (1872},
there have been a number of notable researches
toward high dynamic performance of induction
motors, For instance, they are (Gabriel 1980,
Sugimote 1983, Brod 1985, Harashima 1985, Kuroce
1986, Koyama 1986, Ohnighi 1986, Lorenz 1987}
The underlying idea of their control methods is
to make the induction motor behave like a DC
motor by controlling the rotor fluxes constant. A
good survey on induction motor control is found
in (Leonhard 1986).

Along with remarkable advances in nonlinear
feedback control theory (Jakubczyk 1980, Isidori
1981, 1985, Hunt 1983, Nijmeier 1983, Ha 1986,
1988), its recent results have been successfully
applied to induction motors (Krzeminski 1987,
Luca 1987) and other electric machines (Marino
1984, Illic’-Spong 1987). In this approach, the
nonlinear dynamic equations of the induction mo-~
tor are transformed into a linear system via ap~
propriate nonlinear feedback. Then, well-known
results in linear control theory are employed.

In this paper, we attempt to achieve high
performance dynamic response by wmeans of
decoupled control of rotor speed and flux. Re-
cently developed nonlinear feedback control the-
ories are utilized. Our approach differs from the
prior works in the following aspects. While the
prior results are promising and have their own
merits, full state  feedback is  required
(Krzeminski 1987, Luca 1887) or full linearization
is not obtained (Harashima 1985, Kuroe 1986,
Koyama 1988, Ohnishi 1988). In practice, rotor

fluxes can be measured directly through flux-
coils or hall-probes (Blaschke 1972, Plunkeit
1977). However, il is more cost-effective to esti-
male rotor fluxes based on the rotor circuit
equations (Garcés 1980, Koyama 1986, Hori 1987},
Motivated by the prior results, we construct a
nonlinear feedback controller with an observer
estimating rotor flux., After sufficient time of .
motor operation, the speed dynamic chracieristics
of the induction motor with our controller be-
come linear. Thereby, we achieve high perfor-
mance dynamic response. This is made possible
by decoupled control of rotor speed and flux.

We provide the stability analysis of the
closed-loop system wilth our controller. Both gim~- -
ulation and experimental results are included to
demonsirate the practical significance of our re-
sult. In particular, our experimental results
coniribute to showing that recenily developed
nonlinear feedback control techniques are of
practical use.

2.Main Result

The dynamic equations of an induclion motor
with p pole pairs can be written in the d-q co-
ordinate system rotating synchronously with an
angular speed ws as

igs=—B1 ids +ws 1gs taz far +paawr dgrtcVas
iqs =~ws ids ~a1 igs ~paswr dartaz dar +cVas

&)dr:"ﬂd¢dr+85 igs +(ws ~pwr ) dar

fqr =-Badar+a5 igs— (W —pur Jdar (2.1)
{~Bwr +Te ~Ts )
P M S S (2.2)
J
where Te is the generated torque given by
Te=KT(¢driqs"¢qrids)- ) (2.3)

Here, Vds, Vesy Ws are the control inputs avail-
able to controller designers and & i=1,..,5 are
the parameters of the induction motor. Defi-
nitions of the symbols used frequently in the
developments are given in Nomenclature. )

First, we describe our controller for the in-
duction motors characterized by the above (2.1}~
(2.3). Our controller has the form:

wsigs
Yau| | -+
c
u= £ 3 ~ »
pwr (ias+astar) . pe

(2.4)
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where $ar is obtained by the observer:

far=-asdar +asiss , (2.5)
and
iqs
Wy TPW +Haag = (2.8)
bdar .

For successful set-point tracking, 0=[0 02]7
is chosen as

T
=—HKco ids—xvosdr‘*xloj'('bdr'—gdt ydat,

o
t

Q2=‘Kcu$driqs—Kanr+K£uJ(Wr"—Wr)dt. (2.7
0

Here, ¢ar*, wr* are the reference set points for
¢er, wr, respectively. In the next theorem, we
shall prove that as t—+ o, i) the closed-loop
system described by (2.1)-(2.3) and (2.4)-(2.7)
behaves as if it were a linear decoupled system
and ii) dar—" dar*, der~> 0, and wr—- wr*. Before
stating our theorem, some discussions would be
helpful for readers to catch up the main idea of
our approach.

, Let xE‘A[xx- -xs]" where xi¥igs, x2Z0ar, XeZias,
Xs=wr, X1=dqry, and xsSéar. Let w=[dar*  w]T
and yZ[éar wr]™. Then, the closed~loop system
given by (2.1)-{2.7) can be written as

x=F(x)+G{x)u* +HT, y=Lx, (2.8)

where the detsiled structures of F, G, H, and L
are given in Appendix A. The dynamic behavior
of the system (2.8) is hard to be analyzed in its
present form. For this reason, the following state
transformation is introduced. Let w%{z e]T,
25[21- - +26]7  and &3[e: e2]’. In the new co-
ordinate sysiem of state variables defined by

the sysatem (2.8) is represented as
. m {Az+f(w)e+§u"+ﬁﬁ.i}
w = =
’

el |h
v - c:' e (2.10)

where the detailed structures of f, h, A, B, "}\i,
and C are given in Appendix A. Note that the in-
put-output dynamic characteristics of (2.10} are
the same as those of (2.8) since only the state
transformation (2.9} is involved between two
systems {2.8) and (2.10).

Now, we discuss the special case of e=0 in
{2.10). The system (2.10) is then reduced to the
decoupled linear system: .

L=Ah+8u'+ﬁh,
Ya=Cza (2.11)

The block diagram representation of (2.11) is
/s\hown in Fig.2.1. From Fig.2.1, we ges that when
Par=dar and =0 can be accomplished, the
controller in (2.4) and {2.6) plays the role of lin-
earizing fully the dynamic equations of the in-
duction motor in (2.1)-{2.3) with its input-output
dynamic behavior decoupled, while the controller
in (2.,7) provides the linearly decoupled system
with desirable dynamic charscteristics. In this
case, ¢ar and we can be independently con-
trolled and are dynamically uncoupled . Further-
more, when u* and T. are constant, it is as-
sured that |y - u®|+ 0 a8 t-q@. Hence, in the
case of e=0, the controller in (2.4)-(2.7) allows
for stably decoupled control of rotor speed and
flux.

The following theorem tells that as t--g, |y -
yu|-= 0. That is, as t»p, the input-output dy-

namic characteristics of nonlinear system (2.8)
resemble those of the decoupled linear system
(2.11), Hence, the closed-loop system (2.10)
eventually possesses all advantages described
for the case of e=0 in the preceding paragraph.

Suppose that

(A1) A is a atable matrix.

{A.2) For each u%[0,g)* aixp2 and T {0}~ or
and x(0} € qx the system (2.8) has a
unique solution x:[0,m)-* Qx.

Then, the controller given by (2.4)-(2.7) guar-

antees that

ly-ya|*0 and ¢ar~ 0 88 t>g (2.12)
In addition, if u* and T. are constant,
ly-u*|+0 a5 t— o (2.13)

Proof N )
et @ € RS be a posilive definite symmetric
matrix. By {(A.1), thers exists a positive definite

malrix P ¢ R&* gatisfying
ATP+PA= —Q

Let
$(w)Ef(w)e (2.15)

(2.14)

Since T in {2.9) is a compact mapping, T{ox} is a
compact subset of RS, Furthermore, f is con-
tinuous on T{(qx). By this observation and (A.2),
there exists a>0 such that

[9(w) |zale] (2.186)
Choose ¥>0 so that
2am (Q)>02 VP2 (2.17)
Let *
A:{: 2 wIPl ] (2.18)
~aY[Pl  Yra(Q)) -

Note that by (2.17), A is positive defi-
nite. Let en®z-zm. From {(2.10} and (2.11 ), we
obiain

en=Aen+$(w)

(2.19)
e=h(w)e
y-ya=Cen (2.20)
Define a Lyapunov-like function V by
Y=eTetYenTPen (2.21)

Then, it follows from (2.14}), (2.16), and (2.19)
that

Y=-2aqeTe-YeaTQen +2eaTP{W)Y

<284 €|~ {(Q) {ea |2+2va|en | [P]]e]

={{e|lea{]a{|e[{en|]T (2.22)
s (h)|[eTeaT]T |2

By {2.17),
An(4)>0 (2.23)

By (2.21%-(12.23), we can conclude that (2.12) is
true. Finally, suppose that Ti and u* are con-

stant. Then, it easily follows that from Fig.2.1

and (A.l) that
(2.24)

|ya—u*|{~=0 as t+gp

On the other hand,
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fy—u* {<ly-ym | 4] ya—u?| (2.25)
This with (2.12) and (2.24) proves (2.13).

We need some commenis on the assumptions
(A.1) and (A.2)., From Fig.2.1, we see that (A.l)
can be always satisfied by appropriate choice of
the controller gains, Kisy Kpe, Kco, Kiw, Kpw, and
Kew. The assumption (A.2) is needed for sim-
plicity of proof. It can be removed by imposing
restrictions on the allowable sizes of qixqz, qr,
and |x{(0)}. Then, the proof of Theorem 2.1 be~
comes more complicated. Moreover, (2.12) and
(2.13) hold locally rather than globally.

Finally, we discuss at some length the prior
results related to our controller in the following
remarks.

Remark 2.1 During the preparation of this pa-
per, the very recent paper by (Krzeminski 1987)
came up to our attention. We should note that he
is the first person to find a controller which
provides decoupled control of rotor speed and
flux for the special case of darz§ar and $aqr=0.
However, our theorem is still new, In {Krzeminski
1987), the rotor fluxes are assumed toc be mea-
surable and any experiments were not performed.
Other notable results on decoupled conirol can
be found in (Sugimoto 1983, Harashima 1985,
Kurce 1986, Koyama 1986, Ohnishi 1986). The
controller in- (Kuroe 1986) forces the induction
motor dynamics to behave like a linear system as
t+wm. However, the controllers in (Sugimoto 1983,
Harashima 1985, Kuroe 1988, Koyama 1986, Ohnishi
1886) do not completely decouple the rotor speed
and flux .

1 (za)y]| 8¢ g {yaha

a+(mi+cKap ) s*as}

i

Te

o {zaja ot 1] {ye)2
[ — 'y e B
sH{ay+as+ckew) + [Je+B

Fig.2.1. The block diagram of the decoupled
linear system (2.11}.

3.Simulations and Rxperiments

The practical use of our controller developed
in the preceding section is examined through
simulations and experiments. The tested induction
motor is a squirrel cage type with 4 poles, rated
power 2.2 kW, and rated speed 1750 rpm. The
nominal values of ils parameters are listed in
table 3.1. The controller gains used in the sim-
ulations and experiments are

Kpe= 104.295 Kie= 1210.0 Kee= 3.0

(3.1
Kow= 0.424 Hiw= 1.997 HKew= 0.522

Before presenting simulation and experimental
results, we describe the microprocessor-based
control system used as a test bed for our con-
trollec. As is shown in PFig.3.1, it consists of a 16
bit microprocessor (Motolora 68000} with the CPU
clock rate of 8 MHz, a 3 kW peak rated PWM in-
verter, and the pre-described squirrel cage in-~
duction motor. Signals beiween the micro-
processor and the induction motor are processed

through 12bit A/D converters, D/A converters,
and 682: peripheral interface adapters. The rotor
speed and position are detected by 6840
counter/timers and an optical encoder whose
resolution is 4000 pulses/rev. The DC generator
with rated power 2.2 kW and rated speed 1750
rpm was coupled with the induction motor for
the load test.

Table 3.1, Nominal parameters of the tested
induction motor,

220V/380V, 60Hz, Delta-Connected Stator

Rs 0.68% Re 0.8420

, 1l 83.87mH Lir B85.28mH
M 81.36mH J 0.03Kgm®
B 0.01Kgn?/8| o 0.0756
ias (rated) 5.94 igs (rated) 11A

The 24-34 coordinate transformation in Fig.3.1
is required to convert the contirol inputs for d-q
axis stator voltages into those for the actusl
phage voltages. It i8 given by

Vas sings
Vos |=|~sin(gs+r/3) —sin(9s~-n/6) (3.2)
Ves | [—sin(gs—w/3) —sin{9s+n/6) | |Vas

cOos{s 4as

where gs =[ws dt.

On the other hand, the 34-24 coordinate trans-
formation is to convert the measured stator
phase currents into the corresponding values in
the rotating d-g coordinate syatem. It is given
by

{3.3)

{ids }_ [sin(es—m/S) —coses‘( g’ias‘
| " [sin(osv/3) sings |

\iqa _ibs
The overall control algorithm composed of (2.4)-
{(2.7), (2.28), (3.2}, and (3.3} is execuled every
0.5ms on the Motolora 88000 microprocessor,

In the simulation, the controller given by
(2.4)-{2.7) is considered, The command senario of
dar* and we*r is selected as follows. At 0.4 sec,
wr* ig switched from 800 rpm to 1200 rpm, while
¢ar* is switched from 0.244 Wb to 0.48 Wb. Then,
¢dar* I8 switched back to 0.244 Wb at 1.5 sec.
The simulation and exeperimental results shown
in Fig.3.2(a) and Fig.3.3(a) demonstrate that the
controller given by (2.4)-(2.7) successfully de-
couples regponses of the rotor flux and rotor
speed. Also, a rated torque 12 Nm is applied
from 0.4 sec until 1.4 sec, while Qar‘, wt  are
set 0.48 Wb, 800 rpm, respectively. The simula-
tion and experimental results are shown in
Fig.3.2(b) and Fig.3.3(b). While ithe rotor speed
regponse recovers its commanded value promptly,
the rotor response is not affected by the load
Lorque.

As can be seen from Fig.3.2-Fig.3.3, the ex-
perimental results agree well with the simulation
results, However, our experimental results reveal
weak coupling between responses of ¢ar and wr.
In practice, it is difficult to achieve complete
decoupled control of ¢d4r and we mainly because
of two reasons. Firsi, the control algorithm is
performed through 16 bit word operations in the
microprocessor, so there exist quantization er-
rors, roundoff errorsg, and truncation errors.
Second, there exist mismatches between the ac-
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tual parameters of the induction motor and those
used in the simulations. Such parameler uncer-
tainties may arise from magnetic saturation,
change of temperature, and 8o on.
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Fig.3.1. Configuration of the control system,
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{b) Responses for rectangular load torque.

Fig.3.,2., Simulation results for the controller
given by (2.4)-{2.7).

800rpm o

Y ——

3K —
0.244Wb _

wr 1400rpm/div. iqs:5A/div. ids:3.6A/div.
dar:0.3Wb/div. x-axis:0.2sec/div.

(a) Responsss for a step command of wr* and
rectangular command of dar®.

800rpm —»-

we :600rpm/div. igs:10A/div. ies:3A/div.
dar:0.3Wb/div. x~axis:0.2sec/div.

{b) Responses for a rectangular load torque.

Fig.3.3. Experimental resulis for the controller
given by {(2.4)-(2.7).

4.Conclusion

Through simulations and experiments, we have
shown that the proposed control method can be
effectively used in induction motor control to
achieve high dynamic performance. Comparison of
the simulation and experimental resulis affirms
that the proposed control method is robust
against modelling uncertainties. However, aging
effect or high temperature way bring in large
modelling uncertainties and, in turn, can degen-
erate its performance badly. Further ressarch
should be directed toward improving the pro-
posed method in the respects of computational
load and robustness sgainst large madelling un-
ceriainties.
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Nomenclature

Vas (Vqs ) d-axis (g-axis) stator voltage
Va(Vs,Vc) stator phase vollages

ias (iqs) d-axis (g-axis) stator current
dar (dqr) d-axis (q-axis) rotor flux

Wr rotor angular speed

Ws 1 slip angular speed

Rs (Rr) stator (rotor) resistance
, Ls (Lr) stator (rotor) self-inductance
M stator/rotor mutual inductance
P the number of pole pairs

o 1~-M?/Lalriloakage coefficient
c 1/0Ls

ar C(Rs"‘Mer;‘{er)

az cMRr/Ls?

a3 cM/Lr

a4 Re/Le

as MRc/Lz

J rotor inertia of MG set

B damping coefficient of MG set
T torque disturbance

x| the Euclidesn norm of x € R"
[o: 8% 1 a compact subset of R?

O + & compact subset of R® such

that oxn{xcR8:x2=xs=0}= ¢
rm (M) the minimum eigenvalue of a
symmetric matrix M

Appendix A
(1) F, G, H, and L in (2.8):
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F{x)= xe

—(@+cKeo Y21 +azz +cKe pxa—chpp g+ pasXsX? [
XaX7
WBR1-BLR2Vas

Xa
~Xa
asx1 e +C{Kpws—Kiwxs }

—(&1+cKow ) Xe +82 X7 ~paaxs (K2 =Xa )~

Bxs  Kr{(xexa—x1%7)
J
~Xs
X2 X4

B3 X484 X735

- as5x1-8uXs

001000007 1 1 1000000
x)= yB=]0 000 —000],L=
Q0000100 J . goo0010040).

{2) A, B, C, and H in (2.10):

[~(a1+cKeo ) az—cKee clis’ 0 9 0 ]
as a4 0 1] Q ¢
| RO = TR | SRR | NUNDURE N : I
A= 0 0 0 ‘ﬁ—(&;+a4+)((:l(cw) ~cHow cKiw |,
0 0 6 ! - .= o
i J J
L O 0 0 0 -1 [
' 1 01000 o} }
’}‘ﬂ‘:[OOO’O«-O,B’: ' ,m:“:ooo,
! J 0060601 000010
r paszs ! Koo k
a5z
—_—— i Q
zz(gz-ez) {
f(w)=|" Tasze2 =~ ‘,i”cZz{Ki wzs—Kpwzs )-eszize |,
+02 22 ~PA3 B2 25
z2% (zz—e2) i zz2{Z2—e2)
Kr !
~ -z ! 0
L 0 0 .
: ~B5 24 }
hw=t__ _ ' za{ze-e2)
a5 1
1 -84
z2(22-e2} 1.
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