• 제목/요약/키워드: Closed-form analytical solution

검색결과 87건 처리시간 0.019초

Blending Surface Modelling Using Sixth Order PDEs

  • You, L.H.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.157-166
    • /
    • 2006
  • In order to model blending surfaces with curvature continuity, in this paper we apply sixth order partial differential equations (PDEs), which are solved with a composite power series based method. The proposed composite power series based approach meets boundary conditions exactly, minimises the errors of the PDEs, and creates almost as accurate blending surfaces as those from the closed form solution that is the most accurate but achievable only for some simple blending problems. Since only a few unknown constants are involved, the proposed method is comparable with the closed form solution in terms of computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the satisfaction of continuities along all edges of the patches. Therefore, the developed method is simpler and more efficient than numerical methods, more powerful than the analytical methods, and can be implemented into an effective tool for the generation and manipulation of complex free-form surfaces.

Analytical solution for axisymmetric buckling of joined conical shells under axial compression

  • Kouchakzadeh, M.A.;Shakouri, M.
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.649-664
    • /
    • 2015
  • In this study, the authors present an analytical approach to find the axisymmetric buckling load of two joined isotropic conical shells under axial compression. The problem of two joined conical shells may be considered as the generalized form of joined cylindrical and conical shells with constant or stepped thicknesses. Thickness of each cone is constant; however it may be different from the thickness of the other cone. The boundary conditions are assumed to be simply supported with rigid rings. The governing equations for the conical shells are obtained and solved with an analytical approach. A simple closed-form expression is obtained for the buckling load of two joined truncated conical shells. Results are compared and validated with the numerical results of finite element method. The variation of buckling load with changes in the thickness and semi-vertex angles of the two cones is studied. Finally, application of the results in practical design and range of engineering validity are investigated.

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • Benhenni, Mohammed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Abbes, Fazilay;Li, Yuming;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.535-549
    • /
    • 2019
  • This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

지반응력의 비등방성에 따른 터널측벽의 초기탄성변위 특성에 대한 수치해석적 연구 (Numerical Analysis of the Effects of Stress Anisotropy and Tunnel Excavation Shape on Initial Elastic-wall Displacement)

  • 김상환;정혁일
    • 한국지반공학회논문집
    • /
    • 제18권6호
    • /
    • pp.33-42
    • /
    • 2002
  • 지반 굴착시 지반의 변위특성과 지보재의 설치시기에 대한 중요한 정보를 제공하는 지반반응곡선(Ground reaction curve)을 구하는 방법은 일반적으로 원형단면이고 측압계수 K=1.0인 상태를 가정한 closed from solution을 통해서 구해지지만, 실제 현장에서는 주로 마제형 굴착단면이 사용되며 $K\neq$1.0인 경우 대부분이다. 지반 굴착시 측압계수와 굴착 형상에 따라 측벽에서의 초기탄성변위 및 임계지보압이 변화하는 경향을 알아보기 위하여 측압계수 값을 0.5~3.0 사이에서 변화시키고, 각 측압계수마다 초기연직응력을 5~30MPa 사이에서 변화시켜가면서 원형단면과 마제형 단면인 경우를 구분하여 수치해석을 통해 지반반응곡선을 얻었다. Closed form solution에 의해 얻어진 지반반응곡선은 측압계수와 굴착단면의 형상을 고려하지 못하기 때문에 $K\neq$1.0인 실제 지반에 대한 변위거동과 지반의 자립성을 평가하는 데 큰 오차를 유발할 수 있는 것으로 나타났다. 따라서, Closed from solution에 의해 지보재의 설치시기를 예측하는 것은 많은 오차를 수반하는 과정이므로, 수치해석을 통한 지보설치 시기와 자립성에 대한 검토를 수행하는 것이 바람직 할 것으로 판단된다.

Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads

  • Piccardo, Giuseppe;Tubino, Federica
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.681-704
    • /
    • 2012
  • The dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads is analysed. The non-dimensional form of the motion equation of a beam crossed by a moving harmonic load is solved through a perturbation technique based on a two-scale temporal expansion, which permits a straightforward interpretation of the analytical solution. The dynamic response is expressed through a harmonic function slowly modulated in time, and the maximum dynamic response is identified with the maximum of the slow-varying amplitude. In case of ideal Euler-Bernoulli beams with elastic rotational springs at the support points, starting from analytical expressions for eigenfunctions, closed form solutions for the time-history of the dynamic response and for its maximum value are provided. Two dynamic factors are discussed: the Dynamic Amplification Factor, function of the non-dimensional speed parameter and of the structural damping ratio, and the Transition Deamplification Factor, function of the sole ratio between the two non-dimensional parameters. The influence of the involved parameters on the dynamic amplification is discussed within a general framework. The proposed procedure appears effective also in assessing the maximum response of real bridges characterized by numerically-estimated mode shapes, without requiring burdensome step-by-step dynamic analyses.

Closed form solution for displacements of thick cylinders with varying thickness subjected to non-uniform internal pressure

  • Eipakchi, H.R.;Rahimi, G.H.;Esmaeilzadeh Khadem, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.731-748
    • /
    • 2003
  • In this paper a thick cylindrical shell with varying thickness which is subjected to static non-uniform internal pressure is analyzed. At first, equilibrium equations of the shell have been derived by the energy principle and by considering the first order theory of Mirsky-Herrmann which includes transverse shear deformation. Then the governing equations which are, a system of differential equations with varying coefficients have been solved analytically with the boundary layer technique of the perturbation theory. In spite of complexity of modeling the conditions near the boundaries, the method of this paper is very capable of providing a closed form solution even near the boundaries. Displacement predictions are in a good agreement with the calculated finite elements and other analytical results. The convergence of solution is very fast and the amount of calculations is less than the Frobenius method.

기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석 (Direct Position Kinematics Solution For Casing Oscillator Using the Kinematic Inversion)

  • 백재호;배형섭;이은준;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.580-583
    • /
    • 2002
  • This paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators, which is convenient and intuitionistic to us. A class of 3-RSR parallel manipulator is considered here. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics. The closed-form solution contains two different meanings-analytical and real-time. So we reach the goal of practical application and control. A numerical example is also presented and are verified by an inverse kinematics analysis. It shows that the method has a practical value for real-time control.

  • PDF

A NEW APPLICATION OF ADOMIAN DECOMPOSITION METHOD FOR THE SOLUTION OF FRACTIONAL FOKKER-PLANCK EQUATION WITH INSULATED ENDS

  • Ray, Santanu Saha
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1157-1169
    • /
    • 2010
  • This paper presents the analytical solution of the fractional Fokker-Planck equation by Adomian decomposition method. By using initial conditions, the explicit solution of the equation has been presented in the closed form and then the numerical solution has been represented graphically. Two different approaches have been presented in order to show the application of the present technique. The present method performs extremely well in terms of efficiency and simplicity.

Free vibration analysis of FG carbon nanotube reinforced composite plates using dynamic stiffness method

  • Shahabeddin Hatami;Mohammad Reza Bahrami
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.135-148
    • /
    • 2024
  • This paper analytically investigates the free vibration analysis of functionally graded-carbon nanotube reinforced composite (FG-CNTRC) plates by dynamic stiffness method (DSM). The properties of CNTRC are determined with the extended rule of mixture. The governing differential equations of motion based on the first-order shear deformation theory of CNTRC plate are derived using Hamilton's principle. The FG-CNTRC plates are studied for a uniform and two different distributions of carbon nanotubes (CNTs). The accuracy and performance of the DSM are compared with the results obtained from closed closed-form and semi-analytical solution methods in previous studies. In this study, the effects of boundary condition, distribution type of CNTs, plate aspect ratio, plate length to thickness ratio, and different values of CNTs volume fraction on the natural frequencies of the FG-CNTRC plates are investigated. Finally, various natural frequencies of the plates in different conditions are provided as a benchmark for comparing the accuracy and precision of the other analytical and numerical methods.

분포매개정수를 갖는 원자로의 최적제어 1

  • 지창열;김상훈
    • 전기의세계
    • /
    • 제29권1호
    • /
    • pp.53-57
    • /
    • 1980
  • The analytical treatment for a terminal cost problem of a distributed reactor with a small singular parameter is presented. The inverse of the neutron velocity is regarded as a singular parameter, and the model, adopted for simplicity, is a cylindrically symmetrical reactor. The Helmholtz mode expension is used for the application of the optimal theory for lumped parameter systems to the spatially distributed parameter system. The closed-form solution is explicitely obtained for machine calculation.

  • PDF