• Title/Summary/Keyword: Closed-Structure

Search Result 984, Processing Time 0.025 seconds

Robust Stability Analysis of Fuzzy Feedback Linearization Control Systems

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.78-82
    • /
    • 2002
  • In this paper, we have studied a numerical stability analysis method for the robust fuzzy feedback linearization regulator using Takagi-Sugeno fuzzy model. To analyze the robust stability, we assume that uncertainty is included in the model structure with known bounds. For these structured uncertainty, the robust stability of the closed system is analyzed by applying Linear Matrix Inequalities theory following a transformation of the closed loop systems into Lur'e systems.

Generalized predictive control based on the parametrization of two-degree-of-freedom control systems

  • Naganawa, Akihiro;Obinata, Goro;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.1-4
    • /
    • 1995
  • We propose a new design method for a generalized predictive control (GPC) system based on the parametrization of two-degree-of freedom control systems. The objective is to design the GPC system which guarantees the stability of the control system for a perturbed plant. The design procedure of our proposed method consists of three steps. First, we design a basic controller for a nominal plant using the LQG method and parametrize a whole control system. Next, we identify the deviation between the perturbed plant and the nominal one using a closed-loop identification method and design a free parameter of parametrization to stabilize the closed-loop system. Finally, we design a feedforward controller so as to incorporate GPC technique into our controller structure. A numerical example is presented to show the effectiveness of our proposed method.

  • PDF

A Study on the Inverse Kinematics for a Biped Robot (2족 보행 로봇의 역기구학에 관한 연구)

  • 성영휘
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1026-1032
    • /
    • 2003
  • A biped walking robot which is developed as a platform for researching walking algorithm is briefly introduced. The developed walking robot has 6 degrees of freedom per one leg. The origins of the last three axis do not intersect at a point, so the kinematic analysis is cubmersome with the conventional method. In the former version of the robot, Jacobian-based inverse kinematics method is used. However, the Jacobian-based inverse kinematics method has drawbacks for the application in which knee is fully extended such as stair-case walking. The reason far that is the Jacobian becomes ill-conditioned near the singular points and the method is not able to give adequate solutions. So, a method for giving a closed-form inverse kinematics solution is proposed. The proposed method is based on careful consideration of the kinematic structure of the biped walking robot.

Robust suboptimal regulator design for linear multivariable system

  • Lee, Jae-Hyeok;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.841-846
    • /
    • 1990
  • In this study, a design method to obtain a robust suboptimal regulator for linear multivariable system is presented. This new design method is based on the optimal regulator design method using eigen-structure assignment and it uses additional cost function which represent robustness of the closed loop system. When we design the regulator using pole assignment method for linear multivariable system we have extra degree-of-freedom after assigning desired eigenvalues of the closed loop system in determining the feedback gain. So we assign additional robust suboptimal regulator. In this study we also feedback the system output for more practical applications.

  • PDF

A Study on the Optimum Integration Path for the Analytic Evaluation of the Sommerfeld Integrals (Sommerfeld 적분의 해석적 계산을 위한 최적 적분경로에 관한 연구)

  • Lee, Y.S.;Kim, U.J.;Ko, J.W.;Cho, Y.K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.64-68
    • /
    • 2003
  • For the purpose of the efficient derivation of the closed-form Green's functions by which MoM matrix elements can be analytically evaluated, the optimum approximation path which is deformed from the Sommerfeld integration path on the complex $k_{\rho}$-plane is proposed based upon the steepest descent method and three level approximation procedure.

  • PDF

A Study on State-Space Model Identification of AC Servo Motor System (AC 서보 전동기 시스템의 상태공간 모델 식별에 관한 연구)

  • 이태훈;김상환;송봉철;원충연;이상석
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.199-204
    • /
    • 2000
  • Generally, The systems are so complex that it not possible to obtain reasonable model using physical insight. Also a model based on physical insight contains a number of unknown parameters even if the structure is derived from physical laws. To solve these problems, the systems identification is described in this paper. So, AC servo motor system which has both open loop and closed loop is selected as an example for identification. A state-space model of AC servo motor system is identified through open loop experiment and identified through closed loop experiment and using pole placement integral controller to open loop system. As the results, From ARMA model, We have obtained continuous-time state space model.

  • PDF

A Study on a In-mold Packaging Process using Injection Molding (사출성형을 이용한 마이크로 채널의 패키징 공정에 관한 연구)

  • Lee, Kwan-Hee;Park, Duck-Soo;Yoon, Jae-Sung;Yoo, Yeong-Eun;Choi, Doo-Sun;Kim, Sun-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1821-1824
    • /
    • 2008
  • A novel in-mold packaging process has been developed to manufacture devices with closed channels. In this unified process, fabrication of open channels and forming the rigid cover on top of them are sequentially integrated in the same mold. The entire process is comprised of two phases. In the first phase, the open channels are fabricated under an exquisitely controlled temperature and pressure using the conventional micro injection molding technology. In the second phase, the closed channels are fabricated by conducting the injection molding process using the molded structure with the open channels as a mold insert. As a result, the in-mold technology can eliminate the bonding processes such as heating, ultrasonic or chemical processes for cohesion between the channel and the cover, which have been required in conventional methods.

  • PDF

Modeling and Its Modal Analysis for Distributed Parameter Frame Structures using Exact Dynamic Elements (엄밀한 동적 요소를 이용한 프레임 구조물의 모델링 및 모드 해석)

  • 김종욱;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.966-974
    • /
    • 1999
  • This paper introduces modeling and its modal analysis procedure for exact and closed form solution of in-plane vibrations of general Timoshenko frame structures using exact dynamic element method(EDEM). The derivation procedure of the exact system dynamic matrices for Timoshenko beam frames is described. A new modal analysis procedure is also proposed since the conventional modal analysis schemes are not adequate for the proposed, exact system dynamic matrix. The proposed method provides exact modal parameters as well as all kinds of closed form solutions for general frame structures. Two numerical examples are presented for validating and illustrating the proposed method. The numerical study proves that the proposed method is useful for dynamic analysis of frame structures.

  • PDF

Direct Position Kinematics Solution For Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 백재호;배형섭;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.580-583
    • /
    • 2002
  • This paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators, which is convenient and intuitionistic to us. A class of 3-RSR parallel manipulator is considered here. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics. The closed-form solution contains two different meanings-analytical and real-time. So we reach the goal of practical application and control. A numerical example is also presented and are verified by an inverse kinematics analysis. It shows that the method has a practical value for real-time control.

  • PDF

An integrated process planning system through machine load using the genetic algorithm under NCPP (유전알고리즘을 적용한 NCPP기반의 기계선정 방법)

  • 최회련;김재관;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.612-615
    • /
    • 2002
  • The objective of this study is to develop an integrated process planning system which can flexibly cope with the status changes in a shop floor by utilizing the concept of Non-Linear and Closed-Loop Process Planning(NCPP). In this paper, Genetic Algorithm(GA) is employed in order to quickly generate feasible setup sequences for minimizing the makespan and tardiness under an NCPP. The genetic algorithm developed in this study for getting the machine load utilizes differentiated mutation rate and method in order to increase the chance to avoid a local optimum and to reach a global optimum. Also, it adopts a double gene structure for the sake of convenient modeling of the shop floor. The last step in this system is a simulation process which selects a proper process plan among alternative process plans.

  • PDF