• Title/Summary/Keyword: Closed-Form Solution

Search Result 447, Processing Time 0.027 seconds

Downdrag on a Single Pile and on Pile Groups (단독말뚝과 군말뚝의 Downdrag)

  • Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.259-268
    • /
    • 1993
  • The downdrag on a single pile and on pile groups was examined by using a numerical analysis and an analytical study. The overall objective of the present study was given to the magnitude and distribution of the downdrag forces on piles within a group. The case of the single pile was analyzed by developing a closed form solution. Subsequently the response of groups was investigated by using a detailed numerical approach. Based on the results, it is found that the downdrag load of piles in a group is much smaller than that of a single pile. Also, a simple method is proposed to design groups of 9 to 25 piles with spacing-to-diameter ratios varying from 2.5 to 5.0 for downdrag loads.

  • PDF

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

Modeling and analysis of a cliff-mounted piezoelectric sea-wave energy absorption system

  • Athanassoulis, G.A.;Mamis, K.I.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.53-83
    • /
    • 2013
  • Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes (Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 - 50%) for appropriate combinations of parameter values, which, however, corresponds to exotically flexible piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a question to material scientists.

Free vibrations of laminated composite plates using a novel four variable refined plate theory

  • Sehoul, Mohammed;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.603-613
    • /
    • 2017
  • In this research, the free vibration response of laminated composite plates is investigated using a novel and simple higher order shear deformation plate theory. The model considers a non-linear distribution of the transverse shear strains, and verifies the zero traction boundary conditions on the surfaces of the plate without introducing shear correction coefficient. The developed kinematic uses undetermined integral terms with only four unknowns. Equations of motion are obtained from the Hamilton's principle and the Navier method is used to determine the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical examples studied using the present formulation is compared with three-dimensional elasticity solutions and those calculated using the first-order and the other higher-order theories. It can be concluded that the present model is not only accurate but also efficient and simple in studying the free vibration response of laminated composite plates.

A Study on the Control for an Outer-hull Preprocessing Robot Using a Quaternion (쿼터니언을 이용한 선체 외판 전처리 로봇 제어에 관한 연구)

  • Chung, Won-Jee;Kim, Ki-Jung;Kim, Sung-Hyun;Lee, Choon-Man;Shin, Ki-Su;Lee, Ki-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents the study in the development of optimal working method for an outer-hull preprocessing robot using a quaternion. The out-hull preprocessing robot consists of feathering and cleaning parts. This robot should be controlled correctly for feathering work because it is to be worked on a curved plate that can result in the errors of orientation. In this paper, we propose a control algorithm between given two orientations of the out-hull preprocessing robot by using a quaternion with spherical linear interpolation. The proposed control algorithm is shown to be effective in terms of motor angles and torques when compared to a conventional Euler angle interpolation, by using both $MATLAB^{\circledR}$ and $VisualNastran4D^{\circledR}$.

Inclined Edge Crack in a Piezoelectric Material Under Antiplane Loads (압전재료에 대한 면외하중하의 모서리 경사 균열)

  • Choi, Sung Ryul;Sah, Jong Youb;Jeong, Jae Tack
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.589-596
    • /
    • 2015
  • The occurrence of an inclined edge crack in transversely piezoelectric material is analyzed. Concentrated antiplane mechanical and inplane electrical loads are applied at the boundary and crack surface, respectively. The crack surfaces are assumed to be impermeable to the electric field. Using the Mellin transform with the introduction of a generalized displacement vector, the problem is formulated, and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress, the electric displacement, and the energy release rate are obtained for any crack length and inclination angle. These solutions can be used as fundamental solutions and can be superimposed to represent any arbitrary electromechanical loading.

Real-time SMA control for wire frame-based 3D shape display (와이어프레임 기반의 3차원 형상제시기의 실시간 SMA 제어)

  • Kim Y.M.;Chu Y.J.;Song J.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.295-296
    • /
    • 2006
  • We developed wire frame drive unit based on SMA for the 3D Shape display. Our basic concept is wire frame combination connected with a chain form which can create various shapes and it compared with pin array mechanism which is not able to display mushroom shape. It imitates antagonist mechanism of human musculoskeletal system. we create similar motion using repair-relaxation mechanism and locking mechanism by SMA. Therefore, in this paper, we propose SMA control solution for actuating repair-relaxation mechanism and locking mechanism. In our control system. we use optical sensor and quantitative angle between wire frames for closed loop control. And we supply amplified current for SMA by circuit composed of transistor and apply PWM signal to circuit for efficient control. So, wire frame drive unit enable diversity angle control based on sensor data. And then combination of wire frame drive units will create various objects.

  • PDF

Optimal Energy-Efficient Power Allocation and Outage Performance Analysis for Cognitive Multi-Antenna Relay Network Using Physical-Layer Network Coding

  • Liu, Jia;Zhu, Ying;Kang, GuiXia;Zhang, YiFan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3018-3036
    • /
    • 2013
  • In this paper, we investigate power allocation scheme and outage performance for a physical-layer network coding (PNC) relay based secondary user (SU) communication in cognitive multi-antenna relay networks (CMRNs), in which two secondary transceivers exchange their information via a multi-antenna relay using PNC protocol. We propose an optimal energy-efficient power allocation (OE-PA) scheme to minimize total energy consumption per bit under the sum rate constraint and interference power threshold (IPT) constraints. A closed-form solution for optimal allocation of transmit power among the SU nodes, as well as the outage probability of the cognitive relay system, are then derived analytically and confirmed by numerical results. Numerical simulations demonstrate the PNC protocol has superiority in energy efficiency performance over conventional direct transmission protocol and Four-Time-Slot (4TS) Decode-and-Forward (DF) relay protocol, and the proposed system has the optimal outage performance when the relay is located at the center of two secondary transceivers.

Joint Mode Selection, Link Allocation and Power Control in Underlaying D2D Communication

  • Zhang, Wei;He, Wanbing;Wu, Dan;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5209-5228
    • /
    • 2016
  • Device-to-device (D2D) communication underlaying cellular networks can bring significate benefits for improving the performance of mobile services. However, it hinges on elaborate resource sharing scheme to coordinate interference between cellular users and D2D pairs. We formulate a joint mode selection, link allocation and power control optimization problem for D2D communication sharing uplink resources in a multi-user cellular network and consider the efficiency and the fairness simultaneously. Due to the non-convex difficulty, we propose a three-step scheme: firstly, we conduct mode selection for D2D pairs based on a minimum distance metric after an admission control and obtain some cellular candidates for them. And then, a cellular candidate will be paired to each D2D pair based on fairness. Finally, we use Lagrangian Algorithm to formulate a joint power control strategy for D2D pairs and their reused cellular users and a closed-form of solution is derived. Simulation results demonstrate that our proposed algorithms converge in a short time. Moreover, both the sum rate of D2D pairs and the energy efficiency of cellular users are improved.

A Modified Shooting Method Technique for the Analysis of the Limited Slip Capacity of UHPFRC-NC Composite Structure

  • Han, Sang-Mook;Wu, Xiangguo;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1061-1064
    • /
    • 2008
  • Shear connectors have a finite slip capacity because of the mechanism by which they transfer the shear between UHPFRC and NC elements. At high degree of shear connection, non-linear analysis techniques are required to allow for compressive plasticity and tensile cracking behaviour of the elements. As with all non-linear problems, a closed form solution is difficult to find. A Modified Shooting Method Technique is developed here for non-linear analysis of UHPFRC/concrete composite. The initial effective moment is derived according to the prestressing force. The composite structure is divided into small segments which length is much less than the length of the structure and it can be assumed that the forces and displacements within each segment are constant. An equivalent analysis in composite girders would be to fix the slip strain in each segment and develop a moment curvature relationship for this slip strain in each segment. Additive forces and moment analysis on each section of the segments are analyzed by MSMT. Finally the ultimate slippage of the interface can be evaluated by the MSMT model. This paper presents a nonlinear analysis method for limited slip capacity of UHPFRC-NC interface.

  • PDF