• Title/Summary/Keyword: Closed-Chain Type Robot

Search Result 11, Processing Time 0.03 seconds

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

Development of a New Robot Manipulator Driven by the Closed-chain Actuator (폐체인 구조의 새로운 다관절 로봇 매니퓰레이터 개발)

  • 최형식;백창열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.238-245
    • /
    • 2003
  • To overcome the weakness in the load capacity of conventional robot manipulators actuated by motors with the speed reducer such as the harmonic driver, we proposed a new closed-chain type of the robot actuator which is composed of the four-bar-link mechanism driven by the ball screw. The robot manipulator is revolute-jointed and composed of four axes. The base axis is actuated by the lineal actuator such as the ball screw, and the others are actuated by the proposed actuator. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates and then they are mapped into the sliding coordinates of the ball screw. We performed fundamental tests on the structure of the robot.

A Sliding Mode Control for a Robot Manipulator with closed-chain Structure (폐체인 구조 로봇 머니퓰레이터의 슬라이딩모드 제어)

  • Choi Hyeung Sik;Baek Chagng Yul;Hwang I Chul;Kim Moo Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.98-108
    • /
    • 2005
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To improve this, a new type of robot actuator based on the four-bar-link mechanism driven by the ball screw was constructed. Also, a new type of revolute robot manipulator composed of the developed actuators was developed. But, modelling errors occur due to the off-set from the nominal model since the exact modeling of the complex inertia variation of the four-bar-link actuator is very difficult. To control the proposed robot along the prescribed trajectory, a sliding mode control algorithm was applied with compensation function for the modeling errors. To show performance of the proposed controller, a computer simulation was performed, and its results was presented.

Design of Ultra-light Robot-arm Capable of Carrying Heavy Weight (고중량 이송 가능한 초경량 로봇 팔의 설계)

  • Choi, Hyeung-Sik;Cho, Jong-Rae;Leem, Kun-Wha;Lee, Jong-Hoon;Kim, Young-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.343-350
    • /
    • 2008
  • In this paper, a six degree-of-freedom robot arm which is very light but capable of delivering heavy loads was studied. The proposed robot arm has much higher load capacity than conventional robot arms actuated by motors with speed reducers such as the harmonic drive since a new type of robot actuator based on a closed chain mechanism driven by the ball screw was adopted. Analysis on the design scheme and on the mechanism of the joint actuator of the robot arm were made. Since the robot arm was designed very light, it has deflection in the links. To analyze this, a finite element analysis on the structure of the designed robot links was made using ANSYS software. Verifying experiments on the performance of high load capacity of the robot arm was performed by loading heavy weights on the robot arm. Through experiments. the correctness of the numerical analysis was also verified.

A Steerable Quadruped Walking Robotic System with Legs of a Closed-Chain Mechanism (폐쇄 기구형 다리의 조향가능 4족 보행 로봇 시스템)

  • Im, Seung-Cheol;Jeong, Hae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.118-123
    • /
    • 2000
  • Most quadruped walking robots under current research are individually controlling every joint ic make them step or walk according to an integrated strategy. Such methods are characterized by at least one pair of an actuator and a sensor installed per each 'oint so that the robots weigh execssively and move inefficiently in terms of energy expenditure. In addition, the task of controlling all the joints simultaneously is quite complex and prone to destabilize the robot motion. These respects keep the existing walking robots away from realistic applications such as transportation even if they have potentially, outstanding adaptability to swamps or uneven terrains as opposed to wheeled vehicles. So, this paper presents a new conceptual quadruped robot developed to walk and steer only with a minimal number of actuators owing to a closed-chain mechanism. To prove its actual performance including the adaptability to various types of terrains. experiments are done with the mammal-type prototype. And. it is also shown that the same concept can be easily extended to carry out different gait forms. for instance, that of spiders only with minor modifications.

Robot Dynamic Analysis using Free-body-diagram (자동물체도를 이용한 로봇 동력학 해석)

  • O, Se-Hun
    • 연구논문집
    • /
    • s.22
    • /
    • pp.21-26
    • /
    • 1992
  • Dynamic analysis is important in structural design of SCARA or articulated type industrial robots and is' usually done to main three axes. In this paper, robot arm dynamics was analyzed using FBD(free body diagram). Though the proposed scheme becomes complex as DOF(degree of freedom)increases, it allows to see types and directions of forces and moments acting on the body. Therefore, the strength analysis of robot arm can be done relatively easy in a case of either closed or open loop chain. This method can be used for obtaining dynamic simulation at off-line programming system and calculating required torques at joints at on-line system.

  • PDF

Development of Revolute joint Robot Manipulator with closed-chain structure (폐체인 구조의 다관절 로봇 매니플레이터의 개발)

  • 오정민;백창열;최형식;김명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.540-543
    • /
    • 2002
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, we proposed and constructed a new type of the robot actuator which is four-bar-link mechanism driven by the ball screw. We developed a new type of a revolute-jointed robot manipulator composed of four axes. The base axis is actuated with conventional speed reducer, but the others are actuated by the proposed actuators. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates, and then they are mapped into the sliding coordinates of the ball screw. The structure specifications of the manipulator shown.

  • PDF

Cooperative Control of a Spaceshuttle / Manipulator System (우주선에 설치된 로보트 협동 제어에 관한 연구)

  • Jang Myoung Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The conventional resolved motion control is not applicable for the control of robots on the spacecraft on account of the floating base of the robots. When the robots perform the assembly or repair operations, the position and attitude of the base satellite are disturbed by the reaction force/moment caused by the robot motion. This reaction will cause error on the robot. motion. Therefore, we define a new type of Jacobian(Extended Jacobian) to minimize the effects of reaction on the accuracy of the robot performing assembly or repair operations. In this paper, we utilize the redundancy of the closed chain system to minimize the effects of the robot motion on the position and attitude of spacecraft. This will results in the accurate assembly and repair operations by the robot.

  • PDF