Abstract
Most quadruped walking robots under current research are individually controlling every joint ic make them step or walk according to an integrated strategy. Such methods are characterized by at least one pair of an actuator and a sensor installed per each 'oint so that the robots weigh execssively and move inefficiently in terms of energy expenditure. In addition, the task of controlling all the joints simultaneously is quite complex and prone to destabilize the robot motion. These respects keep the existing walking robots away from realistic applications such as transportation even if they have potentially, outstanding adaptability to swamps or uneven terrains as opposed to wheeled vehicles. So, this paper presents a new conceptual quadruped robot developed to walk and steer only with a minimal number of actuators owing to a closed-chain mechanism. To prove its actual performance including the adaptability to various types of terrains. experiments are done with the mammal-type prototype. And. it is also shown that the same concept can be easily extended to carry out different gait forms. for instance, that of spiders only with minor modifications.