• 제목/요약/키워드: Close-loop control

검색결과 77건 처리시간 0.023초

멀티미디어단말기용 박막형 위상제어루프 안테나 (Phase Controlled Thin Film Loop Antenna for Multi-media Devices)

  • 신천우
    • 한국멀티미디어학회논문지
    • /
    • 제12권7호
    • /
    • pp.971-978
    • /
    • 2009
  • 본 연구는 위상제어형 루프안테나에 관한 것으로서, 유전체기판 상에 에칭기법이나 프린트기법으로 루프안테나용 동박패턴을 제작함에 있어, 루프에서 발생하는 전자계가 서로 보완위상이 되게 배치하여, 인접하는 루프패턴 간에서 방사되는 전자계가 서로 충돌하지 않게 방사되는 위상제어형 루프코일 배치에 관한 것이다. 이 방법으로 인접하는 각 루프코일이 서로 보완위상으로 배치되어 전자계가 원만하게 방사되어, 방사 손실이 없고 방사 효율이 뛰어나게 된다. 또한 복수 개의 각 루프코일의 길이를 서로 달리함으로 인해, 각 루프코일의 길이가 달라짐에 따라 공진주파수가 달라지고, 이러한 공진점이 다른 루프코일을 밀결합 시킴으로 인해 공진주파수 대역을 넓게 할 수 있고, 원하는 대역만큼 조절할 수가 있게 된다. 이로 인하여 크기 20mm$\times$20mm 이하의 사이즈에, 두께 0.4mm 이하의 박막의 유전체기판에 CDMA850 휴대폰대역 및 PCS, WCDMA 등의 안테나를 구현하여 게인 0dBi 이상 방사효율 60% 이상의 안테나를 구현할 수가 있다.

  • PDF

사출성형기의 속도제어 방식에 따른 형개거리에 관한 연구 (A study on the mold opening stroke according to the control method of the injection molding machine)

  • 정현석;이춘규
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.56-61
    • /
    • 2021
  • The increase in automation facilities in the injection molding industry is a very important process control item. The most important item when constructing an unmanned machine using a take-out robot is the "mold opening stroke" of the mold. The injection molding machine control method is divided into hydraulic type and electric type, and there have been few studies on the mold opening distance according to the control method. In this study, the correlation was confirmed by increasing the injection speed to 20, 50, 80, and 100% for the three types of hydraulic control method, open loop and close loop, and electric control method. Through the experiment, the following results were obtained. (1) It can be seen that the reproducibility is excellent with the electric, close loop, and open loop control methods. (2) When the injection speed is set to 50%, the mold opening distance is 263.10~263.27 mm, which is the most reproducible. (3) As a result of ANOVA, both injection speed and mold opening distance showed a significant difference in the hydraulic control method (p<0.05), but it was verified through experiments that there was no significant difference in the electric control method. Based on these results, when electric control is selected rather than hydraulic control, the reproducibility of the mold opening distance is excellent, so it is thought that the taking-out robot can take the object out of the mold more safely.

The Mold Close and Open Control of Injection Molding Machine Using Fuzzy Algorithm

  • Park, Jin-Hyun;Lee, Young-Kwan;Kim, Hun-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.575-579
    • /
    • 2005
  • In this paper, the development of an IMM(Injection Molding Machine) controller is discussed. Presently, the Mold Close and Open Control Method of a toggle-type IMM is open-loop control. Through the development, a PC based control system was built instead of an existing controller and a closed-loop control replaced the previous control method by using PC based PLC. To control the nonlinear system of toggle type clamping unit, a fuzzy PI control algorithm was selected and it was programmed by an IL(Instruction List) and a LD(Ladder Diagram) on a PC based PLC. The application of fuzzy algorithm as the control method was also considered to change a control object like a mold replacement or an additional apparatus. For the development of an IMM controller, PC based PLC of PCI card type, distributed I/O modules with CANopen and Industrial PC and HMI (Human Machine Interface) software were used.

  • PDF

HARDWARE IN THE LOOP SIMULATION OF HYBRID VEHICLE FOR OPTIMAL ENGINE OPERATION BY CVT RATIO CONTROL

  • Yeo, H.;Song, C.H.;Kim, C.S.;Kim, H.S.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.201-208
    • /
    • 2004
  • Response characteristics of the CVT system for a parallel hybrid electric vehicle (HEV) are investigated. From the experiment, CVT ratio control algorithm for the optimal engine operation is obtained. To investigate the effect of the CVT system dynamic characteristics on the HEV performance, a hardware in the loop simulation (HILS) is performed. In the HILS, hardwares of the CVT belt-pulley and hydraulic control valves are used. It is found that the engine performance by the open loop CVT ratio control shows some deviation from the OOL in spite of the RCVs open loop control ability. To improve the engine performance, a closed loop control of the CVT ratio is proposed with variable control gains depending on the shift direction and the CVT speed ratio range by considering the nonlinear characteristics of the RCV and CVT belt-pulley dynamics. The HILS results show that the engine performance is improved by the closed loop control showing the operation trajectory close to the OOL.

Reconfiguring Second-order Dynamic Systems via P-D Feedback Eigenstructure Assignment: A Parametric Method

  • Wang Guo-Sheng;Liang Bing;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.109-116
    • /
    • 2005
  • The design of reconfiguring a class of second-order dynamic systems via proportional plus derivative (P-D) feedback is considered. The aim is to resynthesize a P-D feedback controller such that the eigenvalues of the reconfigured closed-loop system can completely recover those of the original close-loop system, and make the corresponding eigenvectors of the former as close to those of the latter as possible. Based on a parametric result of P-D feedback eigenstructure assignment in second-order dynamic systems, parametric expressions for all the P-D feedback gains and all the closed-loop eigenvector matrices are established and a parametric algorithm for this reconfiguration design is proposed. The parametric algorithm offers all the degrees of design freedom, which can be further utilized to satisfy some additional performances in control system designs. This algorithm involves manipulations only on the original second-order system matrices, thus it is simple and convenient to use. An illustrative example and the simulation results show the simplicity and effect of the proposed parametric method.

LQG/LTR제어기법을 이용한 자동차 서스펜션 시스템의 진동제어 (Vibration Contol of Automotive Suspension System using the LQG/LTR Control Methodology)

  • 안정근;송창훈;유삼현;이종원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.646-653
    • /
    • 2001
  • LQG/LTR Control Methology is recently used for the analysis of multi-variable control in frequency domain. Target filter loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery is accomplished by solving the cheap control and then simulation close to the target filter loop. In this study, LQG/LTR Control Methodology is applied to the seat suspension system. It is found that this technique is very effective to control the system and improve the ride quality of human body.

  • PDF

토크 각도제어기법을 적용한 스테핑 전동기의 위치제어 (Position Control of Stepping Motor using Torque Angle Control Scheme)

  • 이동희
    • 전력전자학회논문지
    • /
    • 제15권5호
    • /
    • pp.361-368
    • /
    • 2010
  • 본 논문에서는 스테핑 전동기의 고속 위치제어기를 제안하였다. 제안된 위치제어기는 폐루프 및 오픈루프 제어모드를 모두 가지고 있으며, 위치 제어를 위해 직접 토크 각도를 제어하는 방식을 적용하였다. 제안된 스테핑 전동기의 위치제어기는 고속 운전상태에서 위치결정 오차를 감소시키기 위해 메모리에 속도에 따른 내장된 토크 각도와 PI 제어기를 통하여 토크각도를 결정하는 폐루프 제어모드로 동작한다. 제안된 폐루프 제어모드에서 메모리에 내장된 토크각도는 선행적으로 속도에 따른 전동기의 토크각도를 룩-업 테이블로 저장하여 제어량을 결정하게 되므로, 빠른 응답특성을 가지게 되며, 부하 및 관성에 따른 위치오차는 PI 제어기의 제어량에 의해 보상되어질 수 있다. 또한, 저속 운전상태와 정지상태에서는 3가지로 구분된 오픈루프 제어모드가 각각 잔여 위치오차를 보정하게 되며, 급속 정지상태에서의 다이나믹 브레이크 동작을 지원하게 된다. 제안된 위치제어기는 2상 스테핑 전동기의 실시험을 통하여 그 성능을 검증하였다.

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Model Based Compensator를 이용한 다변수 제어 분석 (Analysis of Multi-Variable Control using Model Based Compensator)

  • 정지현;이우민;유삼현;이종원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.564-569
    • /
    • 2000
  • Model Based Compensator(MBC) is recently used for the analysis of multi-variable control in frequency domain. Target loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery will be continued in frequency domain until the plant with MBC comes close to the target loop. In this study, the technique using MBC is applied to the elevator vibration control system. It is found that this technique is very effective to control the vibration system.

  • PDF