• Title/Summary/Keyword: Cloning and overexpression

Search Result 59, Processing Time 0.027 seconds

Enhancement of cis,cis-Muconate Productivity by Overexpression of Catechol 1,2-Dioxygenase in Pseudomonas putida BCM114

  • Kim, Beum-Jun;Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.112-114
    • /
    • 1998
  • For enhancement of cis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion to cis,cis-muconate) was cloned and expressed in recombinant Pseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM), cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the cae of wild-type P. putida BM014, whereas cis,cis-muconate productivity continuously increased and catechol was completely transformed to cis,cis-muconate for P. putida BCM114. Specific C12O activity of P. putida BCM114 was about three times higher than that of P. putida BM014, and productivity was enhanced more than two times.

  • PDF

Overexpression of a Eukaryotic ${\gammau}$-glutamylcysteine Synthetase Gene from Brassica juncea Improved Resistance to Oxidative Xtress in Escherichia coli (진핵생물 Brassica juncea의 ${\gamma}$-glutamylcysteine synthetase 유전자 과발현이 원핵생물 Escherichia coii의 산화적 스트레스에 미치는 영향 - I. ${\gamma}$-ECS 유전자의 cloning -)

  • Kim Hye-Gi;Shin Jae-Cheon;Lee In-Ae;Heo In-Kyung;Ahsan Nagib;Jo Jinki
    • Proceedings of the Korean Society of Grassland Science Conference
    • /
    • 2005.06a
    • /
    • pp.172-173
    • /
    • 2005
  • PDF

Cloning and Overexpression of Gene Encoding the Pullulanase from Bacillus naganoensis in Pichia pastoris

  • Xu Bo;Yang Yun-Juan;Huang Zun-Xi
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1185-1191
    • /
    • 2006
  • The expression of a pullulanase gene in Pichia pastoris was investigated. The gene encoding pullulanase was cloned by PCR using the chromosomal DNA of Bacillus naganoensis as the template. The expression vector pPIC9K-Pu was constructed by inserting the pullulanase gene into plasmid pPIC9K and then transformed into Pichia pastoris SMD 1168 by electroporation. Activity determination, SDS-PAGE, and PCR amplification indicated that the gene of the pullulanase from B. naganoensis had successfully been expressed in SMD 1168 and the molecular size of the expressed recombinant product was about 119.9 kDa. This is the first report on the successful expression of the pullulanase from B. naganoensis in P. pastoris. The transformant secreted recombinant pullulanase with the activity of 350.8 IU/ml in shake-flask culture. The properties of the recombinant pullulanase were characterized.

Analysis and cloning of the gene involved in activation of maltose metabolism in Serratia marcescens. (Serratia marecscens에서 maltose 대사를 촉진하는 유전자의 클로닝 해석)

  • 이승진;유주순;김혜선;이상철;정수열;최용락
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.21-25
    • /
    • 2000
  • We have got several clones from Serratia marcescens which stimulated the cells to use maltose as a carbon source in Escherichia. coli TP2139 ( lac, crp). One of the cloned genes, pCKB17, was further analyzed. In order to find whether the increased expression of the gent was under the direction of maltose metabolism, we constructed several recombinant subclones. We have found that the clone, pCKB17AV, codes maltose metabolism stimulation(mms) gene. E. coli transformed with the cloned gene showed increase in the activity of maltose utilzation, The recombinant proteins expressed by multicopy and induction with IPTG, one polypeptide of 29-kDa, was confirmed by SDS-PAGE. The overexpression of maltose-binding proter protein in the presence of mms gene was confirmed by Western blot analysis. Southern hybridization analysis confirmed that the cloned DNA fragment was originated from S. marcescens chromosomal DNA.

  • PDF

Study on CsRCI2D and CsRCI2H for improvement of abiotic stress tolerance in Camelina sativa L.

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Kim, Jung-Eun;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.196-196
    • /
    • 2017
  • Oilseed crop Camelina (Camelina sativa L.) is a suitable for biodiesel production that has high adaptability under low-nutrient condition like marginal land and requires low-input cost for cultivation. Enhanced abiotic stress tolerance of Camelina is very important for oil production under the wide range of different climate. CsRCI2s (Rare Cold Inducible 2) are related proteins in various abiotic stresses that predicted to localized at plasma membrane (PM) and endoplasmic reticulum (ER). These proteins are consist of eight-family that can be divided into tail (CsRCI2D/E/F/G) and no-tail (CsRCI2A/B/E/H) type of C-terminal. However, it is still less understood the function of C-terminal tail. In this study, CsRCI2D/H genes were cloned through gateway cloning system that used pCB302-3 as destination vector. And we used agrobacterium-mediated transformation system for generation of overexpression (OX) transformants. Overexpression of target gene was confirmed using RT-PCR and segregation ratio on selection media. We analyzed physiological response in media and soil under abiotic stresses using CsRCI2D and CsRCI2H overexpression plant. To compare abiotic stresses tolerance, wild type and CsRCI2D/H OX line seeds were sown on agar plate treated with various NaCl and mannitol concentration for 7 days. In the test of growth rate under abiotic stress on media, CsRCI2H OX line showed similar to NaCl and mannitol stress. In the other hand, CsRCI2D OX line showed to be improved stress tolerance that especially increased in 200mM NaCl but was similar on mannitol media. In greenhouse, WT and CsRCI2D/H OX lines for physiological analysis and productivity under abiotic stresses were treated 100, 150, 200mM NaCl. Then it was measured various parameters such as leaf width and length, plant height, total seed weight, flower number, seed number. CsRCI2H OX line in greenhouse did not show any changes in physiological parameters but CsRCI2D OX line was improved both physiological response and productivity under NaCl stress. Among physiological parameters of CsRCI2D OX line under NaCl stress, leaf length and width were observed shorter than WT but it were slightly longer than WT in 200mM NaCl stress. Furthermore, total seed weight of CsRCI2D OX line under stress displayed to decrease than WT in normal condition, but it was gradually raised with increasing NaCl stress then more than WT relatively. These results suggested CsRCI2D might be contribute to improve abiotic stress tolerance. However, function of CsRCI2H is need to more detail study. In conclusion, overexpression of CsRCI2s family can generate various environmental stress tolerance plant and may improve crop productivity for bio-energy production.

  • PDF

Cloning, High-Level Expression, Purification, and Properties of a Novel Endo-${\beta}$-1,4-Mannanase from Bacillus subtilis G1 in Pichia pastoris

  • Vu, Thi Thu Hang;Quyen, Dinh Thi;Dao, Thi Tuyet;Nguyen, Sy Le Thanh
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.331-338
    • /
    • 2012
  • A novel gene coding for an endo-${\beta}$-1,4-mannanase (manA) from Bacillus subtilis strain G1 was cloned and overexpressed in P. pastoris GS115, and the enzyme was purified and characterized. The manA gene consisted of an open reading frame of 1,092 nucleotides, encoding a 364-aa protein, with a predicted molecular mass of 41 kDa. The ${\beta}$-mannanase showed an identity of 90.2-92.9% ${\leq}95%$) with the corresponding amino acid sequences from B. subtilis strains deposited in GenBank. The purified ${\beta}$-mannanase was a monomeric protein on SDS-PAGE with a specific activity of 2,718 U/mg and identified by MALDI-TOF mass spectrometry. The recombinant ${\beta}$-mannanase had an optimum temperature of $45^{\circ}C$ and optimum pH of 6.5. The enzyme was stable at temperatures up to $50^{\circ}C$ (for 8 h) and in the pH range of 5-9. EDTA and most tested metal ions showed a slightly to an obviously inhibitory effect on enzyme activity, whereas metal ions ($Hg^{2+}$, $Pb^{2+}$, and $Co^{2+}$) substantially inhibited the recombinant ${\beta}$-mannanase. The chemical additives including detergents (Triton X-100, Tween 20, and SDS) and organic solvents (methanol, ethanol, n-butanol, and acetone) decreased the enzyme activity, and especially no enzyme activity was observed by addition of SDS at the concentrations of 0.25-1.0% (w/v) or n-butanol at the concentrations of 20-30% (v/v). These results suggested that the ${\beta}$-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals.

Cloning of Dextransucrase Gene from Leuconostoc citreum HJ-P4 and Its High-Level Expression in E. coli by Low Temperature Induction

  • Yi, Ah-Rum;Lee, So-Ra;Jang, Myoung-Uoon;Park, Jung-Mi;Eom, Hyun-Ju;Han, Nam-Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.829-835
    • /
    • 2009
  • A dextransucrase (LcDS) gene from Leuconostoc citreum HJ-P4 has been amplified and cloned in E. coli. The LcDS gene consists of 4,431 nucleotides encoding 1,477 amino acid residues sharing 63-98% of amino acid sequence identities with other known dextransucrases from Leuc. mesenteroides. Interestingly, 0.1 mM of IPTG induction at $15^{\circ}C$ remarkably increased the LcDS productivity to 19,187 U/I culture broth, which was over 330-fold higher than that induced at $37^{\circ}C$. Optimal reaction temperature and pH of LcDS were determined as $35^{\circ}C$ and pH 5.5 in 20 mM sodium acetate buffer, respectively. Meanwhile, 0.1 mM $CaCl_2$ increased its activity to the maximum of 686 U/mg, which was 2.1-fold higher than that in the absence of calcium ion. Similar to the native Leuconostoc dextransucrase, recombinant LcDS could successfully produce a series of isomaltooligosaccharides from sucrose and maltose, on the basis of its transglycosylation activity.

Cloning, Purification and Characterization of Novel L-Aspartate β-decarboxylase from Enterococcus (Enterococcus faecalsis 유래의 신규 L-aspartate β-decarboxylase의 cloning, 정제 및 활성 규명)

  • Lee Dong-Geun;Song Tae-Yoon;Kim Nam Young;Lee Eo-Jin;Ha Sang-An;Lee Jae-Hwa;Ha Jong-Myuong;Ha Bae Jin;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.44-48
    • /
    • 2006
  • The gene for a L-aspartate $\beta-decarboxylase$ (ADC) from Enterococcus faecalis was cloned and sequenced. The gene comprised an open reading frame of 1,611 base pairs, which encodes a protein of 58,960 Da consisting of 536 amino acid residues. The gene was subcloned into an expression plasmid for overexpression of the ADC. The recombinant ADC was produced using E. coli as the host and purified to homogeneity. Our result showed that the ADC may be obtained from bacteria known nucleotide sequence. Thus, we suggest that high value L-alanine might be produced by low value aspartate.

Molecular Cloning, Chromosomal Integration and Expression of the Homoserine Kinase gene THR1 of Saccharomyces cerevisiae (트레오닌 생합성에 관여하는 효모유전자 THR1의 클로님, 염색체통합 및 발현)

  • 최명숙;이호주
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.16-24
    • /
    • 1991
  • The yeast gene THR1 encodes the homoserine kinase (EC 2.7.1.39: HKase) which catalyses the first step of the threonine specific arm at the end of the common pathway for methionine and threonine biosynthesis. A recombinant plasmid pMC3 (12.6 kilobase pairs, vector YCp50) has been cloned into E. coli HB101 from a yeast genomic library through its complementing activity of a thr1 mutation in a yeast recipient strain M39-1D. When subcloned into pMC32 (8.6kbp, vector YRp7) and pMC35 (8.3 kbp, vector YIp5), the HindIII fragment (2.7 kbp) of pMC3 insery was positive in the thrI complementing activity in both yeast and E. coli auxotrophic strains. The linearized pMC35 was introduced into the original recipient yeast strain and the mitotically stable chromosomal integrant was identified among the transformants. Through the tetrad analysis, the integration site of the pMC35 was localized to the region of THR1 structural gene at an expected genetic distance of approximately 11.1 cM from the ARG4 locus on the right arm of the yeast chromosome VIII. When episomically introduced into the auxotrophic cells and cultured in Thr omission liquid medium, the cloned gene overexpressed the HKase in the order of thirteen to fifteenfold, as compared with a wildtype. HKase levels are repressed by addition of threonine at the amount of 300 mg/l and 1, 190 mg/l for pMC32 and pMC3, respectively. Data from genetic analysis and HKase response thus support that the cloned HindIII yeast DNA fragment contains the yeast thr1 structural gene, along with necessary regulatory components for control of its proper expression.

  • PDF

Cloning and Characterization of cDNA for Korean Rockfish (Sebastes schlegeli ) Insulin-like Growth Factor-I

  • Kwon, Mi-Jin;Jo, Jae-Yoon;Nam, Taek-Jeong
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.119-125
    • /
    • 2006
  • To understand the comprehensive mechanisms of biological function for insulin-like growth factor-I (IGF-I) in vertebrates, we have investigated the cDNA sequence of this gene in the korean rockfish (Sebastes schlegeli). The mature form of korean rockfish IGF-I was found to be comprised of 67 amino acid residues, showing about a 7 kDa molecular weight. In this study, we used the polymerase chain reaction (PCR) to obtain a korean rockfish IGF-I (KR IGF-I) cDNA fragment, and methods of rapid amplification of cDNA ends (RACE) to obtain a full length of the KR IGF-I sequence. The KR IGF-I encoded for a predicted amino acid sequence showed identities of 93.6 %, 90.7 %, and 85.4 % in comparison with flounder, chinook salmon, and human IGF-I, respectively. To obtain recombinant biologically active polypeptides, korean rockfish B-C-A-D domains were amplified using the PCR, then the isolated cDNA was expressed in the E. coli BL21(DE3). The recombinant KR IGF-I protein biological function was measured by stimulation of [$^3H$] thymidine incorporation, suggesting the cDNA codes for the korean rockfish proIGF-I.

  • PDF