Browse > Article
http://dx.doi.org/10.4014/jmb.1106.06052

Cloning, High-Level Expression, Purification, and Properties of a Novel Endo-${\beta}$-1,4-Mannanase from Bacillus subtilis G1 in Pichia pastoris  

Vu, Thi Thu Hang (Institute of Biotechnology, Vietnam Academy of Science and Technology)
Quyen, Dinh Thi (Institute of Biotechnology, Vietnam Academy of Science and Technology)
Dao, Thi Tuyet (Institute of Biotechnology, Vietnam Academy of Science and Technology)
Nguyen, Sy Le Thanh (Institute of Biotechnology, Vietnam Academy of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.3, 2012 , pp. 331-338 More about this Journal
Abstract
A novel gene coding for an endo-${\beta}$-1,4-mannanase (manA) from Bacillus subtilis strain G1 was cloned and overexpressed in P. pastoris GS115, and the enzyme was purified and characterized. The manA gene consisted of an open reading frame of 1,092 nucleotides, encoding a 364-aa protein, with a predicted molecular mass of 41 kDa. The ${\beta}$-mannanase showed an identity of 90.2-92.9% ${\leq}95%$) with the corresponding amino acid sequences from B. subtilis strains deposited in GenBank. The purified ${\beta}$-mannanase was a monomeric protein on SDS-PAGE with a specific activity of 2,718 U/mg and identified by MALDI-TOF mass spectrometry. The recombinant ${\beta}$-mannanase had an optimum temperature of $45^{\circ}C$ and optimum pH of 6.5. The enzyme was stable at temperatures up to $50^{\circ}C$ (for 8 h) and in the pH range of 5-9. EDTA and most tested metal ions showed a slightly to an obviously inhibitory effect on enzyme activity, whereas metal ions ($Hg^{2+}$, $Pb^{2+}$, and $Co^{2+}$) substantially inhibited the recombinant ${\beta}$-mannanase. The chemical additives including detergents (Triton X-100, Tween 20, and SDS) and organic solvents (methanol, ethanol, n-butanol, and acetone) decreased the enzyme activity, and especially no enzyme activity was observed by addition of SDS at the concentrations of 0.25-1.0% (w/v) or n-butanol at the concentrations of 20-30% (v/v). These results suggested that the ${\beta}$-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals.
Keywords
Bacillus subtilis G1; endo-${\beta}$-1,4-mannanase gene; cloning; overexpression; Pichia pastoris; properties;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Quyen, D. T., S. L. T. Nguyen, and V. C. Pham. 2008. Expression of an endo-${\beta}$-1,4-mannanase from B. subtilis G1 in E. coli and its properties. Vietnam. J. Biotechnol. 6: 183-189.
2 Songsiriritthigul, C., B. Buranabanyat, D. Haltrich, and M. Yamabhai. 2010. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from Bacillus licheniformis in Escherichia coli. Microb. Cell Fact. 9: 20.   DOI   ScienceOn
3 Tran, T. T., T. M. P. Nguyen, B. N. Nguyen, and V. C. Phan. 2008. Changes of serum glycoproteins in lung cancer patients. J. Proteomics Bioinform. 1: 011-016.   DOI
4 Xu, B., L. Duan, X.-H. Tang, J.-J. Li, Y.-L. Mu, Y.-J. Yang, and Z. Huang. 2009. Characterization of 6 Bacillus subtilis ${\beta}$-mannanases and their genes. Afr. J. Biotechnol. 8: 4316-4324.
5 Yoon, K.-H. and B.-L. Lim. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17: 1688-1694.
6 Yoon, K. H., S. Chung, and B. L. Lim. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46: 344-349.   DOI   ScienceOn
7 Yoshida, S., Y. Sako, and A. Uchida. 1998. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for an enzyme from Bacillus circulans K-1 that degrades guar gum. Biosci. Biotechnol. Biochem. 62: 514-520.   DOI   ScienceOn
8 Kanjanavas, P., P. Khawsak, A. Pakpitcharoen, S. Areekit, T. Sriyaphai, K. Pothivejkul, et al. 2009. Over-expression and characterization of the alkalophilic, organic solvent-tolerant, and thermotolerant endo-1,4-${\beta}$-mannanase from Bacillus licheniformis isolate THCM 3.1. Sci. Asia 35: 17-23.   DOI
9 Khanongnuch, C., T. Ooi, and S. Kinoshita. 1999. Cloning and nucleotide sequence of ${\beta}$-mannanase and cellulase genes from Bacillus sp. 5H. World J. Microbiol. Biotechnol. 15: 249-258.   DOI   ScienceOn
10 Kweun, M. A., M. S. Lee, J. H. Choi, K. H. Cho, and K. H. Yoon. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14: 1295-1302.
11 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
12 Li, Y., P. Yang, K. Meng, Y. Wang, H. Luo, N. Wu, et al. 2008. Gene cloning, expression, and characterization of a novel betamannanase from Bacillus circulans CGMCC 1416. J. Microbiol. Biotechnol. 18: 160-166.
13 Li, Y. N., K. Meng, Y. R. Wang, and B. Yao. 2006. A ${\beta}$-mannanase from B. subtilis B36: Purification, properties sequencing, gene cloning and expression in E. coli. Z. Naturforsch. (C) 61: 840-846.
14 Mendoza, N. S., M. Arai, K. Sugimoto, M. Ueda, T. Kawaguchi, and L. M. Joson. 1995. Cloning and sequencing of beta-mannanase gene from Bacillus subtilis NM-39. Biochim. Biophys. Acta 1243: 552-554.   DOI   ScienceOn
15 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
16 Nielsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot. Eng. 10: 1-6.   DOI
17 Quyen, D. T., S. L. T. Nguyen, and T. T. Dao. 2007. A novel esterase from Ralstonia sp. M1: Gene cloning, sequencing, high-level expression and characterization. Prot. Expr. Purif. 51: 133-140.   DOI   ScienceOn
18 He, X., N. Liu, W. Li, Z. Zhang, B. Zhang, and Y. Ma. 2008. Inducible and constitutive expression of a novel thermostable alkaline ${\beta}$-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme Microb. Technol. 43: 13-18.   DOI   ScienceOn
19 Julenius, K., A. Molgaard, R. Gupta, and S. Brunak. 2005. Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153-164.
20 Qiao, J., Z. Rao, B. Dong, and Y. Cao. 2010. Expression of Bacillus subtilis MA139 ${\beta}$-mannanase in Pichia pastoris and the enzyme characterization. Appl. Biochem. Biotechnol. 160: 1362-1370.   DOI   ScienceOn
21 Benech, R., X. Li, D. Patton, J. Powlowski, R. Storms, R. Bourbonnais, et al. 2007. Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-beta-1,4-mannanase. Enzyme Microb. Technol. 41: 740-747.   DOI   ScienceOn
22 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
23 Dhawan, S. and J. Kaur. 2007. Microbial mannanase: An overview of production and applications. Crit. Rev. Biotechnol. 27: 197-216.   DOI   ScienceOn
24 Ethier, N., G. Talbot, and J. Sygusch. 1998. Gene cloning, DNA sequencing, and expression of thermostable beta-mannanase from Bacillus stearothermophilus. Appl. Environ. Microbiol. 64: 4428-4432.
25 Hatada, Y., N. Takeda, K. Hirasawa, Y. Ohta, R. Usami, Y. Yoshida, et al. 2005. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9: 497-500.   DOI   ScienceOn