Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.1.044

Cloning, Purification and Characterization of Novel L-Aspartate β-decarboxylase from Enterococcus  

Lee Dong-Geun (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Song Tae-Yoon (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Kim Nam Young (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Lee Eo-Jin (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Ha Sang-An (Department of Environmental Engineering, College of Engineering, Silla University)
Lee Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Ha Jong-Myuong (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Ha Bae Jin (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Lee Sang-Hyeon (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Publication Information
Journal of Life Science / v.16, no.1, 2006 , pp. 44-48 More about this Journal
Abstract
The gene for a L-aspartate $\beta-decarboxylase$ (ADC) from Enterococcus faecalis was cloned and sequenced. The gene comprised an open reading frame of 1,611 base pairs, which encodes a protein of 58,960 Da consisting of 536 amino acid residues. The gene was subcloned into an expression plasmid for overexpression of the ADC. The recombinant ADC was produced using E. coli as the host and purified to homogeneity. Our result showed that the ADC may be obtained from bacteria known nucleotide sequence. Thus, we suggest that high value L-alanine might be produced by low value aspartate.
Keywords
alanine; Enterococcus faecalis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sambrook, J. and D. W. Russell. 1989. Molecular Cloning: A Laboratory Manual. 2nd eds., Cold Spring Harbor Laboratory Press, New York, New York
2 Orlygsson, J., R. Anderson, and B. H. Svensson. 1995. Alanine as an end product during fermentation of monosaccharides by Clostridium strain P2. Anton. Leeuw. 68, 273-280   DOI
3 Ravot, G., B. Ollivier, M.-L. Fardeau, B. K. Patel, K. T. Andrews, M. Magot and J.-L. Garcia. 1996. L-Alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62, 2657-2659
4 Schaefer, T., K. B. Xavier, H. Santos and P. Schoenheit. 1994. Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on $^{13}C$ labelling data and enzyme activities. FEMS Microbiol. Lett. 21, 107-114
5 Tate, S. S. and A. Meister. 1971. L-aspartate ${\beta}-decarboxylase;$ structure, catalytic activities, and allosteric regulation. Adv. Enzymol. Relat. Areas Mol. Biol. 35, 503-543   DOI
6 Abe, K., F. Ohnishi, K. Yagi, T. Nakajima, T. Higuchi, M. Sano, M. Machida, R. I. Sarker and P. C. Maloney. 2002. Plasmid-Encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction. J. Bacteriol. 184, 2906-2913   DOI
7 Bodalo, A., J. Bastida, J. L. Gomez, E. Gomez, I. Alcaraz and M. L. Asanza. 1997. Stabilization studies of L-aminoacylase-producing Pseudomonas sp. BA2 immobilized in calcium alginate gel. Enzyme Microb. Tech. 21, 64-69   DOI   ScienceOn
8 Calik, G., H. Vural and T. H. Ozdamar. 1997. Bioprocess parameters and oxygen transfer effects in the growth of Pseudomonas dacunhae for L-alanine production. Chem. Eng. J. 65, 109-116   DOI   ScienceOn
9 Fusee, M. C., W. E. Swann and G. J. Calton. 1981. Immobilization of Escherichia coli cells containing aspartase activity with polyurethane and its application for L-aspartic acid production. Appl. Environ. Microbiol. 42, 672-676
10 Ward, D. E., S. W. Kengen, J. van der Oost and W. M. de Vos. 2000. Purification and characterization of the alanine aminotransferase from the hyperthermophilic archaeon Pyrococcus furiosus and its role in alanine production. J. Bacteriol. 182, 2559-2566   DOI
11 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   ScienceOn
12 http://www.ncbi.nlm.nih.gov/genomes/static/eub_g.html
13 임번삼. 2004. 발효산업의 현황과 발전방안. KISTI 기술동향보고서
14 임번삼. 2003. 아미노산 발효공업. KISTI 기술동향분석보고서
15 임번삼. 2003. 아미노산 생산균주의 개량. KISTI 기술동향분석보고서
16 Fusee, M. C. and J. E. Weber. 1984. Immobilization by polyurethane of Pseudomonas dacunhae cells containing l-aspartate ${\beta}-decarboxylase$ activity and application to l-alanine production. Appl. Environ. Microbiol. 48, 694-698
17 Hols, P., M. Kleerebezem, A. N. Schanck, T. Ferain, J. Hugenholtz, J. Delcour and W. M. de Vos. 1999. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 17, 588-592   DOI   ScienceOn
18 Kengen, S. W. and A. J. M. Stams. 1994. Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161, 168-175   DOI
19 Kobayashi, T., S. Higuchi, K. Kimura, T. Kudo and K. Horikoshi. 1995. Properties of glutamate dehydrogenase and its involvement in alanine production in alanine production in a hyperthermophilic archaeon, Thermococcus Profundus. J. Biochem. 120(3), 531-539