• Title/Summary/Keyword: Cloned Embryo

Search Result 168, Processing Time 0.022 seconds

Selection of Surrogates and Analysis of Its Ovulation Status for the Production of Somatic Cell Cloned Piglets (체세포 복제돼지 생산에 있어서 대리모의 선발과 배란상태 분석)

  • Hyun Sang-Hwan;Jeung Yeon-Woo;Lee Eun-Song;Kim Hyun-Wook;Kim Gon-Hyung;Jeung Eui-Bae
    • Journal of Veterinary Clinics
    • /
    • v.23 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • Production of cloned pigs by somatic cell nuclear transfer (SCNT) has unlimited value for developing critical biotechnology such as xenotransplantation. Various efforts have been made to establish this technology, and several litters of live piglets have been produced after transfer of SCNT embryos. However, the efficiency is very low compared to piglet production by artificial insemination or natural mating. So far, most studies have been limited to in vitro production of SCNT embryos. This study was conducted to standardize a surrogate recipient (gilts) for transfer of SCNT embryos to improve pregnancy rate. Potential surrogate gilts over 7 months of age were checked for their estrous status by observing external signs; vaginal fluid, vulva redness, vulva swelling, and standing response to back pressure. Viscosity of vaginal fluid was evaluated and classified as none (0), medium (1), and strong (2). Vulva redness and swelling was respectively assessed by none or shrink (0), medium (1), strong (2). Back pressure was estimated by an immediate move (0), standing less than 10 sec (1), and standing over 10 see (2). And then ovulation status of each surrogate was classified as pre-ovulation (PO-17 surrogates), just prior to ovulation (JPO-20 surrogates), in ovulation (IO-12 surrogates), just after ovulation (JAO-14 surrogates) and after ovulation (AO-24 surrogates) at the time of surgery for embryo transfer (ET). Real-time ultrasonographic scanners have been used for pregnancy diagnosis by observing amniotic vesicles. The first pregnancy diagnosis was done on Day 30 after ET and then repeated 2-week interval. In the results, SCNT embryos transferred into JPO surrogates gave better pregnancy rates (45%) than others (4% to 11%) on Day 30 after ET. These result indicates that surrogate gilts in a status just prior to ovulation can offer optimal condition to establish pregnancy by transfer of SCNT pig embryos.

Endoplasmic Stress Inhibition during Oocyte Maturation Improves Preimplantation Development of Cloned Pig Embryos

  • Elahi, Fazle;Shin, Hyeji;Lee, Joohyeong;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.287-295
    • /
    • 2017
  • Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.

Apoptosis and Apoptosis Related Gene Expression in Preimplantation Porcine Diploid Parthenotes Developing In Vitro (착상전 이배체 단위발생 돼지난자의 체외 배양에서 세포사멸과 세포사멸에 관여하는 유전자의 발현에 관한 연구)

  • X. S. Cui;Kim, I. H.;Kim, N. H.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.2
    • /
    • pp.169-177
    • /
    • 2003
  • This study was conducted to determine effects of polyvinyl alcohol (PVA), fetal bovine serum (FBS) bovine serum albumin (BSA) and epidermal growth factor (EGF) on blastocoel formation, total cell number, apoptosis and apoptosis-related gene expression of porcine diploid parthenotes developing in vitro. The addition of 0.4% BSA to the culture medium enhanced the development of 2-cell stage parthenotes to the blastocysts stage (P<0.01). FBS reduced cell numbers of blastocysts (P<0.01) and increased percentage of apoptosis in the blastocysts (P<0.001). However, while BSA increased cell numbers, it did so only when EGF was present. Either agent on its own had no effect. Similarly, apoptosis in the blastocysts was not influenced by either agent on its own but was reduced when both BSA and EGF were present. Furthermore, semi-quantitative reverse-transcriptase polymerase chain reaction revealed that EGF enhanced the mRNA expression of Bcl-xL in the presence of 0.4% BSA but BSA and EGF alone had no effect, and EGF and/or BSA did not influence Bak gene expression in the blastocyst stage parthenotes. However FBS reduced Bcl-xL mRNA expression (P <0.05) and enhanced Bak expression. This result suggests that apoptosis related genes expression is significantly affected by supplements, which may result in alteration of apoptosis and embryo viability of porcine embryos developing in vitro.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Vector Construction and Transformation of Ginseng (Panax ginseng C.A. Meyer) Using Disease Resistant Genes (내병성 관련유전자의 운반체 재조합 및 인삼(Panax ginseng C.A. Meyer)의 형질전환)

  • Yang, Deok-Chun;Lee, Eun-Kyung;Kim, Moo-Sung
    • Journal of Ginseng Research
    • /
    • v.27 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • For study about introduce of gene connected with disease and transformation system of gingseng, chitinase gene cloned from soybene and disease resistant gene were carried out for expression and transformation of plant using Agrobacterium. The disease resistance gene(DR-49), 35S-35S-AMV, has been constructed. The disease resistance gene and chitinase gene were introduced into the binary vector pRD 400, which were mobilized into Agrobacterium tumefaciens faciens strain MP 90 and LBA 4404 harboring disarmed Ti-plasmid. As a result of induce transformants using ginseng embryo and petiole, multi shoots were formed on MS medium supplemented 1 mg/ι 2,4-D and 0.5 mg/ι kinetin. Also transformation by cotyledonwas effective on MS medium supplemented 1 mg/ι 2,4-D and 0.5 mg/ι kinetin, transformation percent of disease resistant gene and chitinase gene were showed 18%, 14% respectively. As transformed tissue is under pre-embryoid condition, normal shoot is required through the process of matured embryo.

Effect of L-Glutathione Treatment during Somatic Cell Nuclear Transfer Procedures on the Subsequent Embryonic Development and DNA Methylation Status of Cloned Bovine Embryos

  • Bae, Hyo-Kyung;Yoon, Nam-Sik;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • We investigate the effect of L-glutathione (GSH), an antioxidant, treatment during the somatic cell nuclear transfer (SCNT) procedures on the in vitro development and DNA methylation status of bovine SCNT embryos. Bovine in vitro matured (IVM) oocytes were enucleated and electrofused with a donor cell, then activated by a combination of Ca-ionophore and 6-dimethylaminopurine. The recipient oocytes or reconstituted oocytes were treated with $50{\mu}M$ GSH during these SCNT procedures from enucleation to activation treatment. The SCNT embryos were cultured for 7 days to evaluate the in vitro development, apoptosis and DNA methylation in blastocysts. The apoptosis was measured by TUNEL assay and caspase-3 activity assay. Methylated DNA of SCNT embryos at the blastocyst stages was detected using a 5-methylcytidine (5-MeC) antibody. The developmental rate to the blastocyst stage was significantly higher (P<0.05) in GSH treatment group ($32.5{\pm}1.2%$, 78/235) than that of non-treated control SCNT embryos ($22.3{\pm}1.8%$, 50/224). TUNEL assay revealed that the numbers of apoptotic cells in GSH treatment group ($2.3{\pm}0.4%$) were significantly lower (P<0.05) than that of control ($3.8{\pm}0.6%$). Relative caspase-3 activity of GSH treated group was $0.8{\pm}0.06$ fold compared to that of control. DNA methylation status of blastocysts in GSH treatment group ($13.1{\pm}0.5$, pixels/embryo) was significantly lower (P<0.05) than that of control ($17.4{\pm}0.9$, pixels/embryo). These results suggest that antioxidant GSH treatment during SCNT procedures can improve the embryonic development and reduce the apoptosis and DNA methylation level of bovine SCNT embryos, which may enhance the nuclear reprogramming of bovine SCNT embryos.

Relationship between Developmental Ability and Cell Number of Day 2 Porcine Embryos Produced by Parthenogenesis or Somatic Cell Nuclear Transfer

  • Uhm, Sang Jun;Gupta, Mukesh Kumar;Chung, Hak-Jae;Kim, Jin Hoi;Park, Chankyu;Lee, Hoon Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.483-491
    • /
    • 2009
  • In vitro produced porcine embryos have potential application in reproductive biotechnology. However, their development potential has been very low. This study evaluated the in vitro developmental ability and quality of cloned and parthenogenetic porcine embryos having 2-4 cells or 5-8 cells on Day 2 of in vitro culture. Analysis of results showed that 2 to 4 cell embryos had higher ability to form blastocysts than 5 to 8 cell embryos (p<0.05). Blastocysts produced from culture of 2 to 4 cell embryos also contained higher cell numbers and had lower BAX:BCLxL transcript ratio than those produced from 5 to 8 cell embryos (p<0.05), thereby suggesting 2 to 4 cell embryos have higher development potential. Further investigation revealed that 5 to 8 cell embryos had higher incidence (100${\pm}$0.0%) of blastomeric fragmentation than 2 to 4 cell embryos (15.2${\pm}$5.5% for parthenogenetic and 27.7${\pm}$7.1% for cloned embryos). This suggests that low development potential of 5 to 8 cell embryos was associated with blastomeric fragmentation. In conclusion, we have shown that morphological selection of embryos based on cell number on Day 2 of in vitro culture could offer a practical and valuable non-invasive means to select good quality porcine embryos.

Molecular Cloning and Expression of Grass Carp MyoD in Yeast Pichia pastoris

  • Wang, Lixin;Bai, Junjie;Luo, Jianren;Chen, Hong;Ye, Xing;Jian, Qing;Lao, Haihua
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2007
  • MyoD, expressed in skeletal muscle lineages of vertebrate embryo, is one of muscle-specific basic helix-loop-helix (bHLH) transcription factors, which plays a key role in the determination and differentiation of all skeletal muscle lineages. In this study, a cDNA of grass carp MyoD was cloned and characterized from total RNA of grass carp embryos by RT-PCR. The full-length cDNA of grass carp MyoD is 1597 bp. The cDNA sequence analysis reveals an open reading frame of 825 bp coding for a protein of 275 amino acids, which includes a bHLH domain composed of basic domain (1-84th amino acids) and HLH domain (98-142th amino acids), without signal peptide. Then the MyoD cDNA of grass carp was cloned to yeast expression vector pPICZ$\alpha$A and transformed into P. pastoris GS115 strain, the recombinant MyoD protein with a molecular weight of about 31KD was obtained after inducing for 2d with 0.5% methanol in pH 8.0 BMGY medium, and the maximum yield was about 250 mg/L in shaking-flask fermentation. The results were expected to benefit for further studies on the crystal structure and physiological function of fish MyoD.

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF

Expression and DNA Methylation Change of Oct-4 in Cloned Bovine Blastocysts (체세포복제 소 배반포의 Oct-4 발현과 DNA 메틸화 변화)

  • Cha, Byung-Hyun;Choi, Jung-Sang;Hwang, Seong-Soo;Chung, Hak-Jae;Im, Gi-Sun;Yang, Byong-Chul;Kim, Myong-Jik;Cho, Jae-Hyeon;Seong, Hwan-Hoo;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.23 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • DNA methylation is one of the reasons for poor survival of clone animals. The OCT-4 gene is essential for maintaining pluripotency of embryonic stem (ES) cells and early embryos. We previously reported that the 5'-promoter region of Oct-4 gene was a target of DNA methylation and the methylation status was changed variously during embryonic development in bovine. The study conducted to examine the expression and methylation pattern of tissue-dependent differentially methylated region (T-DMR) of Oct-4 gene in bovine somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF) blastocysts. The Oct-4 gene expression was evaluated by RT-PCR and fluorescence immunocytochemistry. The methylation pattern of T-DMR was analyzed using restriction mapping and bisulfite sequencing methods. The Oct-4 transcripts were highly expressed in IVF, while they were not expressed in SCNT. The Oct-4 protein was not detected or expressed at very low level in SCNT, the intensity of Oct-4 protein, however, was strong in IVF. On the other hand, the T-DMR of Oct-4 gene was hypermethylated in SCNT compared to that of IVF. These results suggested that expression and the failure of demethylation of Oct-4 gene was closely associated with incomplete development of SCNT embryos.