• Title/Summary/Keyword: Clone library

Search Result 290, Processing Time 0.036 seconds

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung;Park, Sook-Young;Kim, Hyejeong;Kim, Dongyoung;Lee, Seon-Woo;Kim, Heung Tae;Lee, Jong-Hwan;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF

Expression and Characterization of ${\alpha}$-Methylacyl CoA Racemase from Anisakis simplex Larvae

  • Kim, Bong-Jin;Kim, Sun-Mi;Cho, Min-Kyung;Yu, Hak-Sun;Lee, Yong-Seok;Cha, Hee-Jae;Ock, Mee-Sun
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.2
    • /
    • pp.165-171
    • /
    • 2012
  • Larval excretory-secretory products of Anisakis simplex are known to cause allergic reactions in humans. A cDNA library of A. simplex 3rd-stage larvae (L3) was immunoscreened with polyclonal rabbit serum raised against A. simplex L3 excretory-secretory products to identify an antigen that elicits the immune response. One cDNA clone, designated as ${\alpha}$-methylacyl CoA racemase (Amacr) contained a 1,412 bp cDNA transcript with a single open reading frame that encoded 418 amino acids. A. simplex Amacr showed a high degree of homology compared to Amacr orthologs from other species. Amacr mRNA was highly and constitutively expressed regardless of temperature (10-$40^{\circ}C$) and time (24-48 hr). Immunohistochemical analysis revealed that Amacr was expressed mainly in the ventriculus of A. simplex larvae. The Amacr protein produced in large quantities from the ventriculus is probably responsible for many functions in the development and growth of A. simplex larvae.

Metagenomic Analysis of Novel Lignocellulose-Degrading Enzymes from Higher Termite Guts Inhabiting Microbes

  • Nimchua, Thidarat;Thongaram, Taksawan;Uengwetwanit, Tanaporn;Pongpattanakitshote, Somchai;Eurwilaichitr, Lily
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.462-469
    • /
    • 2012
  • A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from $50^{\circ}C$ to $55^{\circ}C$. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.

Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

  • Kim, Ji-Yeon;Ahn, Hye-Jin;Ryu, Kyung-Ju;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.

Characterization of Expressed Sequence Tags (ESTs) Generated from the Bombyx mandarina Whole Larvae and Molecular Cloning of Serine Protease Homologue Gene

  • Hwang, Jae Sam;Yun, Eun Young;Goo, Tae Won;Kim, Iksoo;Choi, Kwang Ho;Seong, Su Il;Kim, Keun Young;Lee, Sang Mong;Kang, Seok Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.167-171
    • /
    • 2004
  • We constructed an oligo-d(T) primed directional cDNA library from the Bombyx mandarina whole larvae. In an effort to isolate genes expressed in the B. mandarina, 227 expressed sequence tags (ESTs) were generated by single-pass sequencing from the cDNA library. Sequence analysis showed that 107 clones (47.1%) were classified into known genes and 120 clones (52.9%) were novel transcripts, which are unknown for their function. Of the 107 known genes, the most abundant gene was found to be actin and followed by serine protease in the expression profile. Among these clones, a serine protease homolog (BmSP) which is a class of proteolytic enzymes isolated. Full-length sequence of the BmSP cDNA clone was 922 bp in length and has an open reading frame of 276 amino acids. The conserved histidine, aspatic acid and serine residues forming the catalytic center as well as cysteine residues contributing to three disulphide bonds also were found in Bmsp gene. mRNA expression analysis revealed a high and specific expression of the gene only in midgut tissue, suggesting that BmSP gene is closely associated with the expression of digestive enzyme.

Identification and Cloning of jipA Encoding a Polypeptide That Interacts with a Homolog of Yeast Rad6, UVSJ in Aspergillus nidulans

  • Cho, Jae-Han;Yun, Seok-Soong;Jang, Young-Kug;Cha, Mee-Jeong;Kwon, Nak-Jung;Chae, Suhn-Kee
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • RAD6 in yeast mediates postreplication DNA repair and is responsible for DNA-damage induced mutations. RAD6 encodes ubiquitin-conjugating enzyme that is well conserved among eukaryotic organisms. However, the molecular targets and consequences of their ubiquitination by Rad6 have remained elusive. In Aspergillus nidulans, a RAD6 homolog has been isolated and shown to be an allele of uvs). We screened a CDNA library to isolate UVSJ-interacting proteins by the yeast two-hybrid system. JIPA was identified as an interactor of UVSJ. Their interaction was confirmed in vitro by a GST-pull down assay. JIPA was also able to interact with mutant UVSJ proteins, UVSJl and the active site cysteine mutant UVSJ-C88A. The N- and the C-terminal regions of UVSJ required for the interaction with UVSH, a RAD18 homolog of yeast which physically interacts with Rad6, were not necessary for the JIPA and UVSJ interactions. About 1.4 kb jipA transcript was detected in Northern analysis and its amount was not significantly increased in response to DNA-damaging agents. A genomic DNA clone of the jipA gene was isolated from a chromosome I specific genomic library by PCR-sib selection. Sequence determination of genomic and cDNA of jipA revealed an ORF of 893 bp interrupted by 2 introns, encoding a putative polypeptide of 262 amino acids. JIPA has 33% amino acid sequence identity to TIP41 of Saccharomyces cerevisiae which negatively regulates the TOR signaling pathway.

Isolation of Defense-Related Genes from Nicotiana glutinosa Infected by Tobacco Mosaic Virus Using a Modified Differential Screening

  • Park, Kyung-Soon;Suh, Mi-Chung;Cheong, Jong-Joo;Park, Doil
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.295-301
    • /
    • 1999
  • Many of plant defense responses are consequence of transcriptional activation of related genes. We have developed a modified differential screening procedure to isolate tobacco genes that are involved in the defense responses against TMV infection. A cDNA library was constructed from Nicotiana glutinosa leaves infected by TMV under temperature shift conditions. Each of plasmid DNA in the library was hybridized on a set of slot blots to a pool of cDNA probes prepared from either TMV-infected or mock-treated tobacco leaves. Among 900 plasmid DNAs, 81 clones exhibiting significantly enhanced or reduced level of hybridization to either probe were selected for nucleotide sequencing. The clones were listed into 61 genes considering redundancy between the sequences. The genes were identified to be defense-related genes including PR-genes and genes involved in primary or secondary metabolisms. This results supports the implication that plant defense process entails a major shift in total cellular metabolisms rather than activation of a limited number of defense-related genes. Expression patterns of a number of defense-related genes. Expression patterns of a number of selected genes were examined in northern blot analyses. It is notable that the clone 630 of unknown function exhibits expression pattern similar to those of previously known PR-genes. Experiments to elucidate the roles in defense mechanism of a couple of genes newly identified in this study are in progress.

  • PDF

Streptomyces BAC Cloning of a Large-Sized Biosynthetic Gene Cluster of NPP B1, a Potential SARS-CoV-2 RdRp Inhibitor

  • Park, Ji-Hee;Park, Heung-Soon;Nah, Hee-Ju;Kang, Seung-Hoon;Choi, Si-Sun;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.911-917
    • /
    • 2022
  • As valuable antibiotics, microbial natural products have been in use for decades in various fields. Among them are polyene compounds including nystatin, amphotericin, and nystatin-like Pseudonocardia polyenes (NPPs). Polyene macrolides are known to possess various biological effects, such as antifungal and antiviral activities. NPP A1, which is produced by Pseudonocardia autotrophica, contains a unique disaccharide moiety in the tetraene macrolide backbone. NPP B1, with a heptane structure and improved antifungal activity, was then developed via genetic manipulation of the NPP A1 biosynthetic gene cluster (BGC). Here, we generated a Streptomyces artificial chromosomal DNA library to isolate a large-sized NPP B1 BGC. The NPP B1 BGC was successfully isolated from P. autotrophica chromosome through the construction and screening of a bacterial artificial chromosome (BAC) library, even though the isolated 140-kb BAC clone (named pNPPB1s) lacked approximately 8 kb of the right-end portion of the NPP B1 BGC. The additional introduction of the pNPPB1s as well as co-expression of the 32-kb portion including the missing 8 kb led to a 7.3-fold increase in the production level of NPP B1 in P. autotrophica. The qRT-PCR confirmed that the transcription level of NPP B1 BGC was significantly increased in the P. autotrophica strain containing two copies of the NPP B1 BGCs. Interestingly, the NPP B1 exhibited a previously unidentified SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibition activity in vitro. These results suggest that the Streptomyces BAC cloning of a large-sized, natural product BGC is a valuable approach for titer improvement and biological activity screening of natural products in actinomycetes.

Identification of bacteria from the peri-implant sulcus of orthodontic mini-implants using 16S rDNA clone library (16S rDNA 클론 library 제작 및 핵산염기서열 결정을 통한 교정용 미니임플랜트 주위 열구의 세균 동정)

  • Lim, Sung-Hoon;Kim, Kwang-Won;Yoo, So-Young;Kook, Joong-Ki;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.251-262
    • /
    • 2006
  • Objective: The purpose of this study was to compare the bacterial flora at the peri-implant sulcus of the orthodontic mini-implant placed in the alveolar mucosa with the bacterial flora at the adjacent healthy gingival sulcus. Methods: Two plaque samples from 7 patients were collected by inserting paper points into the sulcus between the mini-implant and ligature wire connected to the mini-implant head and inflamed alveolar mucosa, and from the gingival sulcus of a healthy tooth adjacent to the mini-implant. Results: Using 16S rDNA clone library, the 24 kinds of bacteria including Haemophilus aphrophilus, Sphingomonas species, Capnocytophaga species, Prevotella melaninogenica, Lachnospiraceae species, Porphyromonas species, Neisseria flava were identified only from the sulcus around the mini-implant. These bacteria constituted only 9.2% of total clones, and the bacteria identified from both the sulcus around mini-implants and the gingival sulcus constituted 80.4% of total clones. Of these bacteria, clones of Prevotella species, Atopobium rimae, Veillonella species, Streptococcus intermedius/constellatus, Streptococcus salivarius were more frequently isolated from the peri-implant sulcus. Conclusion: This study suggests that a broad epidemiological study is needed to find causative bacteria which induce inflammation from the peri-implant sulcus.