• Title/Summary/Keyword: Clock Synchronization

Search Result 229, Processing Time 0.032 seconds

Clock Synchronization in Delay Tolerant Sensor Networks

  • Jarochowski, Bartosz;Shin, Seung-Jeung;Ryu, Dae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.189-190
    • /
    • 2009
  • For applications involving the monitoring of large areas, dense sensor networks are not practical. For such applications, delay tolerant networks which consist of disconnected clusters of sensors that are visited periodically by a mobile robot are implemented. Because clock synchronization is critical to any data collection endeavor, and because the structure of DTNs is unique, this paper examines various clock synchronization algorithms as they apply to DTNs. A simulation tool was developed to examine and evaluate the RBS clock synchronization algorithm for DTNs.

Network Synchronization and NCR Recovery for ACM Mode for DVB-S2/RCS2 (DVB-S2/RCS-2 ACM 운용 환경에서의 네트워크 동기 및 NCR 복원)

  • Jeon, Hanik;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.102-108
    • /
    • 2015
  • In general, two way satellite communication systems based on TDMA(Time Division Multiple Access) require network clock synchronization between hub station and remote terminals. This paper describes basic concepts for network clock synchronization based on NCR(Network Clock Reference) clock recovery scheme as suggested in DVB-S2/ RCS2 international standards. in addition, a new NCR insertion method has been proposed and evaluated in terms of supporting CCM mode as well as ACM mode which optimizes throughput by changing code rates and modulation types ranging from QPSK to 32-APSK.

Evaluation of Synchronization Performance with PTP (정밀 시각 프로토콜 동기 성능 평가)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Goo;Park, Young-Mi;Lee, Moon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.669-675
    • /
    • 2014
  • In this paper, we described the investigated theoretical time synchronization performances and experiment results obtained by commercially provided PTP (Precise Time Protocol) modules when the time of a slave clock is synchronized to the master clock. In the case of the theoretical performance analysis, we investigated 3 types of clock levels such as Crystal Oscillator (XO), TCXO (Temperature Compensated XO) and OCXO (Oven Controlled XO). From the analysis, it was observed that the synchronization performance is greatly influenced by the synchronization period and the required performance under 1 us can be achieved by using XO level clocks when the synchronization period is less than 2 seconds and the uncertainty of the propagation delay is under 100 ns. For the experiments using commercial PTP modules, the synchronization performance was investigated for direct, through 1 hub and through 2 hubs connections between the master clock and the slave clock. From the experiment results, we observed that time synchronization under 90 ns with 1,000 seconds observation interval can be achieved in the case of direct connection.

A Mechanism of Clock Synchronization for Wireless Networked Control System (무선 네트워크 제어 시스템을 위한 클럭 동기화 메커니즘)

  • Do, Trong-Hop;Quan, Wenji;Yoo, Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.564-571
    • /
    • 2013
  • Wireless network has been used in many applications due to its advantages such as convenience, mobility, productivity, easy deployment, easy expandability and low cost. When it comes to stability, wireless network still shows its limitation which makes it difficult to be used for real-time control system. One of the first problems of using wireless network for control system is clock synchronization. There have been synchronization schemes proposed for wired networked control system as well as wireless network. But these should not be applied directly in wireless network control system. In this paper, we point out the importance of clock synchronization in wireless network control system. Then based on the characteristic of wireless networked control system, we propose a clock synchronization scheme for it. Furthermore, we simulate our scheme and compare with previous synchronization scheme in wired and wireless environments.

Implementation of IEEE1588 for Clock Synchronization (CAN 네트워크의 시간동기를 위한 IEEE1588 구현)

  • Park, Sung-Won;Kim, In-Sung;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.123-132
    • /
    • 2014
  • In this paper, an IEEE1588 based clock synchronization technique for CAN (Controller Area Network) is presented. Clock synchronization plays a key role to the success of a networked embedded system. Recently, the IEEE1588 algorithm making use of dedicated chipsets has been widely adopted for the synchronization of various industrial applications using Ethernet. However, there is no chipset available for CAN. This paper presents the implementation of IEEE1588 for CAN, which is implemented using only software and CAN packets without any dedicated chipset. The proposed approach is verified by the comparison between the estimated synchronization precision with a simple model and the measured precision with experimental setup.

Design of a IEEE 1588 Based Clock Synchronization System for Femtocell Frequency Signal Generation (펨토셀 주파수 신호 생성을 위한 IEEE 1588 기반 클록 동기화 시스템의 설계)

  • Han, Jiho;Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4871-4877
    • /
    • 2015
  • This article presents a circuit and a system for IEEE 1588 based clock synchronization to generate a very accurate frequency signal required in femtocell devices. A prototype board and the experimental environment to verify the functions and to evaluate the performance are explained to verify the feasibility of the proposed synchronization system. To make low-cost femtocells without constraints on the place of installation, it is very important to study on the practical implementation of synchronization system based on IEEE 1588. The experimental result shows that the synchronization errors between -16 ns and 9 ns are guaranteed over the network of femtocell devices with the proposed synchronization circuits, thus the synchronization criteria of the 3GPP HNB are met.

SBAS SIGNAL SYNCHRONIZATION

  • Kim, Gang-Ho;Kim, Do-Yoon;Lee, Taik-Jin;Kee, Changdon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.309-314
    • /
    • 2006
  • In general DGPS system, the correction message is transferred to users by wireless modem. To cover wide area, many DGPS station should be needed. And DGPS users must have a wireless modem that is not necessary in standalone GPS. But SBAS users don't need a wireless modem to receive DGPS corrections because SBAS correction message is transmitted from the GEO satellite by L1 frequency band. SBAS signal is generated in the GUS(Geo Uplink Subsystem) and uplink to the GEO satellite. This uplink transmission process causes two problems that are not existed in GPS. The one is a time delay in the uplink signal. The other is an ionospheric problem on uplink signal, code delay and carrier phase advance. These two problems cause ranging error to user. Another critical ranging error factor is clock synchronization. SBAS reference clock must be synchronized with GPS clock for an accurate ranging service. The time delay can be removed by close loop control. We propose uplink ionospheric error correcting algorithm for C/A code and carrier. As a result, the ranging accuracy increased high. To synchronize SBAS reference clock with GPS clock, I reviewed synchronization algorithm. And I modified it because the algorithm didn't consider doppler that caused by satellites' dynamics. SBAS reference clock synchronized with GPS clock in high accuracy by modified algorithm. We think that this paper will contribute to basic research for constructing satellite based DGPS system.

  • PDF

Short-term Stable Characteristic Analysis of the Synchronized Clock in the Synchronization Network and SDH Based Network (동기망과 동기식 전송망에서의 동기클럭 단기안정 특성 분석)

  • Lee, Chang-Gi
    • The KIPS Transactions:PartC
    • /
    • v.8C no.3
    • /
    • pp.299-310
    • /
    • 2001
  • 동기망과 동기식 전송망을 설계할 때에는 동기클럭의 단기안정 클럭특성과 이에 따른 망구성 노드수가 중요하게 고려되어야 할 사항이다. 또한 동기망과 전송망을 동시에 고려하여야 한다. 만일 전송망 만을 고려한다면 동기망에서의 발생할 수 있는 클럭성능 저하를 반영시킬 수 없기 때문이다. 지금까지의 연구는 주로 동기식 전송망만을 적용하여 연구되었다. 본 논문에서는 동기망과 동기식 전송망을 통합 고려하고, 최악의 원더생성을 적용하였을 때의 세가지 클럭상태에 따른 망동기클럭의 MTIE와 TDEV 특성을 얻었다. 또한 현 ITU-T 규격을 적용하여 세 가지 클럭상태에 따른 최대 망 구성 노드수를 구하였다.

  • PDF

A Robust Recovery Method of Reference Clock against Random Delay Jitter for Satellite Multimedia System (위성 멀티미디어 시스템을 위한 랜덤 지연지터에 강인한 기준 클럭 복원)

  • Kim Won-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • This paper presents an accurate recovery method of the reference clock which is needed for network synchronization in two-way satellite multimedia systems compliant with DVB-RCS specification and which use closed loop method for burst synchronization. In these systems, the remote station transmits TDMA burst via return link. For burst synchronization, it obtains reference clock from program clock reference (PCR) defined by MPEG-2 system specification. The PCR is generated periodically at the hub system by sampling system clock which runs at 27MHz $\pm$ 30ppm. Since the reference clock is recovered by means of digital PLL(DPLL) using imprecise PCR values due to variable random jitter, the recovered clock frequency of remote station doesn't exactly match reference clock of hub station. We propose a robust recovery method of reference clock against random delay jitter The simulation results show that the recovery error is remarkably decreased from 5 clocks to 1 clock of 27MHz relative to the general DPLL recovery method.

  • PDF

Method of Clock Noise Generation Corresponding to Clock Specification

  • Lee, Young Kyu;Yang, Sung Hoon;Lee, Chang Bok;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Clocks for time synchronization using radio signals such as global navigation satellite system (GNSS) may lose reference signals by intentional or unintentional jamming. This is called as holdover. When holdover occurs, a clock goes into free run in which synchronization performance is degraded considerably. In order to maintain the required precise time synchronization during holdover, accurate estimation on main parameters such as frequency offset and frequency drift is needed. It is necessary to implement an optimum filter through various simulation tests by creating clock noise in accordance with given specifications in order to estimate the main parameters accurately. In this paper, a method that creates clock noise in accordance with given specifications is described.