• Title/Summary/Keyword: Clinical study

Search Result 32,701, Processing Time 0.063 seconds

Preservation of the Posterior Ligaments for Preventing Postoperative Spinal Instability in Posterior Decompression of Lumbar Spinal Stenosis: Comparative Study between Port-Hole Decompression and Subtotal Laminectomy (요추부 척추관 협착증의 후방 감압술에서 후방 인대의 보존 여부와 술 후 척추 불안정성과의 연관성: 포트홀(Port-Hole) 감압술과 후궁 아전절제술 간 비교 연구)

  • Jung, Yu-Hun;Na, Hwa-Yeop;Choe, Saehun;Kim, Jin;Lee, Joon-Ha
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.71-77
    • /
    • 2020
  • Purpose: To determine if sparing the interspinous and supraspinous ligaments during posterior decompression for lumbar spinal stenosis is significant in preventing postoperative spinal instability. Materials and Methods: A total of 83 patients who underwent posterior decompression for lumbar spinal stenosis between March 2014 and March 2017 with a minimum one-year follow-up period, were studied retrospectively. The subjects were divided into two groups according to the type of surgery. Fifty-six patients who underwent posterior decompression by the port-hole technique were grouped as A, while 27 patients who underwent posterior decompression by a subtotal laminectomy grouped as B. To evaluate the clinical results, the Oswestry disability index (ODI), visual analogue scale (VAS) for both back pain (VAS-B) and radiating pain (VAS-R), and the walking distance of neurogenic intermittent claudication (NIC) were checked pre- and postoperatively, while simple radiographs of the lateral and flexion-extension view in the standing position were taken preoperatively and then every six months after to measure anteroposterior slippage (slip percentage), the difference in anteroposterior slippage between flexion and extension (dynamic slip percentage), angular displacement, and the difference in angular displacement between flexion and extension (dynamic angular displacement) to evaluate the radiological results. Results: The ODI (from 28.1 to 12.8 in group A, from 27.3 to 12.3 in group B), VAS-B (from 7.0 to 2.6 in group A, from 7.7 to 3.2 in group B), VAS-R (from 8.5 to 2.8 in group A, from 8.7 to 2.9 in group B), and walking distance of NIC (from 118.4 m to 1,496.2 m in group A, from 127.6 m to 1,481.6 m in group B) were improved in both groups. On the other hand, while the other radiologic results showed no differences, the dynamic angular displacement between both groups showed a significant difference postoperatively (group A from 6.2° to 6.7°, group B from 6.5° to 8.4°, p-value=0.019). Conclusion: Removal of the posterior ligaments, including the interspinous and supraspinous ligaments, during posterior decompression of lumbar spinal stenosis can cause a postoperative increase in dynamic angular displacement, which can be prevented by the port-hole technique, which spares these posterior ligaments.

Diagnosis and Treatment of Brown Tumor (Brown 종양의 진단 및 치료)

  • Cho, Yong Jin;Cho, Yung Min;Na, Seung Min;Jung, Sung-Taek
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • Purpose: Brown tumor is a tumor-like disease that can occur as a linked disease of hyperparathyroidism which can causes osteoporosis, osteitis fibrosa cystica, pathologic fractures. Brown tumor has been reported as a case report, but there is no comprehensive report on the exact diagnosis and principle of management for osseous lesion. The purpose of this study is to report the treatment and results of osseous lesions through 5 cases. Materials and Methods: From February 2004 to May 2015, five cases of Brown tumor were diagnosed in Chosun University Hospital and Chonnam National University Hospital orthopedic department. Medical records and radiographs were reviewed retrospectively. Parathyroid tumors were surgically removed, and surgical treatment and observation were performed for orthopedic osseous lesions. Results: The mean length of the long axis of the symptomatic osseous lesion was 6.2 cm (4.5-9.0 cm). An average of 7.6 (range, 3 to 14) of high uptake osseous lesion showed in whole body bone scan. The absolute value, T-score and Z-score of the vertebrae and proximal femur were adequate for diagnosis of osteoporosis using dual energy X-ray absorptiometry bone mineral density at diagnosis and recovered to normal at the last follow-up. In laboratory tests, serum concentrations of total calcium, ionized calcium, inorganic phosphorus, serum alkaline phosphatase, and parathyroid hormone were helpful to diagnosis and normalized upon successful removal of parathyroid adenoma or cancer. Conclusion: For accurate diagnosis of Brown tumor, it should be accompanied by systemic examination as well as clinical symptoms, laboratory tests and radiologic examination for osseous lesions. And a good prognosis can be expected if the hyperparathyroidism is treated together with the comprehensive treatment of osseous lesions.

Anti-obesogenic Effect of Brassica juncea Extract on Bisphenol-A Induced Adipogenesis of 3T3-L1 Cells (비스페놀 A (Bisphenol-A)로 유도된 지방세포 분화에 미치는 갓 추출물의 항오비소겐 효과)

  • Lee, Se-jeong;Na, Uoon-Joo;Choi, Sun-Il;Han, Xionggao;Men, Xiao;Lee, Youn Hwan;Kim, Hyun Duk;Kim, Yoon Jung;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.6
    • /
    • pp.528-536
    • /
    • 2021
  • The purpose of the study was to investigate the content of sinigrin, an index component, in Brassica juncea extract and to evaluate the differentiation of lipocytes, inhibition of production of reactive oxygen species (ROS) and reduction of protein production by lipogenic factors (PPARγ, C/EBPα, aP2) in the processing of Brassica juncea extract and sinigrin in 3T3-L1 preadipocytes which induces Bisphenol A (BPA), an endocrine disrupting environmental hormone. From the investigation, the content of sinigrin in Brassica juncea extract, measured by HPLC, is found to be 21.27±0.2 mg/g. The XTT assay result on BPA-derived 3T3-L1 adipocytes shows there is no cytotoxicity found from 180 µM of sinigrin and 300 ㎍/mL of Brassica juncea extract. Moreover, both intracellular lipid accumulation and ROS production during differentiation of lipocyte are significantly reduced in cells processed with Brassica juncea extract and sinigrin. Lastly, it was also found that the production of transcription factors of lipocyte differentiation, PPARγ, C/EBPα and aP2, were found to be suppressed by the application of Brassica juncea extract and sinigrin. Such results reveals that Brassica juncea is effective in not only suppressing lipid accumulation in the environmental hormone bisphenol A-derived lipocyte, but also in reducing the ROS. The sinigrin-containing Brassica juncea is highly expected to be used in natural functional supplements that prevents the lipid metabolism disorders caused by BPA. There are necessities for additional clinical research and follow-up studies on the in vivo model to verify the relevant mechanisms.

Atorvastatin and Fluvastatin Can Reduce IL-1β-induced Inflammatory Responses in Human Keratinocytes (Atorvastatin 그리고 fluvastatin 약물의 IL-1β-유도 염증반응 억제 효과)

  • Choe, Yeong-In;Moon, Kyoung Mi;Yoo, Jae Cheal;Byun, June-Ho;Hwang, Sun-Chul;Moon, Dong Kyu;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.418-424
    • /
    • 2021
  • Skin inflammation (dermatitis) is caused by varying skin damage due to ultraviolet radiation and microbial infection. Currently prescribed drugs for dermatitis include anti-histamine and steroid drug classes that soothe inflammation. However, incorrect or prolonged use of steroids can cause weakening of skin barriers as well as osteoporosis. Therefore, treating dermatitis with a drug that has minimal side effects is important. Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, are cholesterol-lowering drugs that have been widely treated for hyperlipidemia and cardiovascular diseases. Interestingly, recent studies have shown the anti-inflammatory effects of statins in both experimental and clinical models for of osteoarthritis. This study investigated the possible anti-inflammatory effects of atorvastatin and fluvastatin in human keratinocytes (HaCaT cells), which are crucial components of skin barriers. Stimulation of HaCaT cells with IL-1β increased the expression of the COX2 protein, a major player of inflammatory responses. However, this induction of the COX2 protein was downregulated by pretreatments with atorvastatin and fluvastatin. Treatment with IL-1ß-induced the upregulation of other inflammatory genes (such as iNOS and MMP-1) and these expressions were similarly lowered by these two statin drug treatments. Taken together, these results indicated that atorvastatin and fluvastatin can reduce IL-1β-induced inflammatory responses in HaCaT cells. In conclusion, the findings suggest that atorvastatin and fluvastatin can be potential modulators for ameliorating skin inflammation.

Learning Curve of the Direct Anterior Approach for Hip Arthroplasty (직접전방 접근법을 통한 인공 고관절 치환술의 학습곡선)

  • Ham, Dong Hun;Chung, Woo Chull;Choi, Byeong Yeol;Choi, Jong Eun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.143-153
    • /
    • 2020
  • Purpose: To evaluate the timing of the improvement in surgical skills of the direct anterior approach for hip arthroplasty through an analysis of the clinical features and learning curve in 58 cases. Materials and Methods: From November 2016 to November 2018, 58 patients, who were divided into an early half and late half, and underwent hip arthroplasty by the direct anterior approach, were enrolled in this retrospective study. The operation time and complications (fracture, lateral femoral cutaneous nerve injury, heterotopic ossification, infection, and dislocation) were assessed using a chi-square test, paired t-test, and cumulative sum (CUSUM) test. Results: The mean operation times in total hip arthroplasty (26 cases) and bipolar hemi-arthroplasty were 132.1 minutes and 79.7 minutes, respectively, demonstrating a significant difference between the two groups. CUSUM analysis based on the results revealed breakthrough points of the operation time, decreasing to less than the mean operation time because of the 16th case in total hip arthroplasty and 14th case in bipolar hemiarthroplasty. Complications were encountered in the early phase and late phase: five cases of fractures in the early phase, no case in the late phase; eight and two cases of lateral femoral cutaneous nerve injury, respectively; three and two cases of heterotopic ossification, respectively; and one case of dislocation, one case of infection and three cases of others in the early phase. The CUSUM chart for the fracture rate during operation in the early phase revealed the following: five cases fracture (17.2%) in the early phase and no case in the late phase (0%). This highlights the learning curve and the need for monitoring the inadequacy of operation based on the complications. Conclusion: Hip arthroplasty performed by the direct anterior approach based on an anatomical understanding makes it difficult to observe the surgical field and requires a learning curve of at least 30 cases.

Results of Surgical Treatment of Patella Dislocation (슬개골 탈구의 수술적 치료 결과)

  • Kim, Hui Taek;Cho, Yoon Jae
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.134-141
    • /
    • 2021
  • Purpose: Patellar dislocations have a range of causes. This study examined the results of treatment aimed at balancing soft tissues around the patella. Materials and Methods: Thirty-two patellar dislocations in 28 patients (21 females and seven males) were examined. The mean patient age at the time of surgery was 11.5 years, and the mean follow-up period was 4.6 years. Dislocations were 19 chronic, six habitual, six congenital, and one acute. Soft tissue balancing surgery included lateral capsular release, medial capsular plication, and inferolateral transfer of the vastus medialis obliquus. Medial transfer of the patellar tendon, partial strip of the rectus femoris and patella tendon, and distal femoral osteotomy were also performed selectively. The preoperative Q angle, femoral anteversion angle, tibial external rotation angle, tibial tubercle-trochlear groove distance (TT-TG distance), mechanical femoral-tibial angle, and femoral trochlear dysplasia according to Dejour were measured, and the pre- and postoperative Lysholm-Tegner scores were used to analyze the clinical results. Results: The mean preoperative Q angle, TT-TG distance, femoral anteversion angle, tibial external rotation angle, mechanical femoraltibia angle, and Lysholm-Tegner score were 9.3°, 15.5 mm, 25.6°, 30.4°, 3.0°, and 75.8, respectively. Eleven patients had systemic ligament laxity with a Beighton score of five or more. Twenty-two patients had femoral trochlear dysplasia: four type A (3 patients), 16 type B (15 patients), one type C (1 patient), and four type D (3 patients). Of the 32 cases, 28 were corrected successfully by the first operation. Of four cases of postoperative subluxation, three were corrected by the second operation, and one of them was corrected after a third operation. The last patient is currently being followed-up. The mean Lysholm-Tegner score improved to 85.6 after the operation. Conclusion: Correcting all the causes of patella dislocation simultaneously is difficult. Nevertheless, satisfactory outcomes were obtained with soft tissue balancing surgery around the patella and a corrective osteotomy for an abnormal mechanical axis of the femur-tibia and torsion.

Glutamate-rich 4 Binds to Kinesin Superfamily Protein 5A (Glutamate-rich 4와 kinesin superfamily protein 5A와의 결합)

  • Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Sang Jin Kim;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Intracellular cargo transport is mediated by molecular motor proteins, such as kinesin and cytoplasmic dynein. Kinesins make up a large subfamily of molecular motors. Kinesin-1 is a plus-end-directed molecular motor protein that moves various cargoes, such as organelles, protein complexes, and mRNAs, along a microtubule track. It consists of the kinesin superfamily protein (KIF) 5A, 5B, and 5C (also called kinesin heavy chains) and kinesin light chains (KLCs). Kinesin-1 interacts with many different binding proteins through its carboxyl (C)-terminal region of KIF5s and KLCs, but their binding proteins have not yet been fully identified. In this study, a yeast two-hybrid assay was used to identify the proteins that interact with the KIF5A specific C-terminal region. The assay revealed an interaction between KIF5A and glutamate-rich 4 (ERICH4). ERICH4 bound to the KIF5A specific the C-terminal region but did not interact with the C-terminal region of KIF5B or KIF3A (a motor protein of kinesin-2). In addition, KIF5A did not interact with another isoform, ERICH1. Glutathione S-transferase (GST) pull-downs showed that KIF5A interacts with GST-ERICH4 and GST-ERICH4-amino (N)-terminal but not with GST-ERICH4-C or GST alone. When co-expressed in HEK-293T cells, ERICH4 co-localized with KIF5A and co-immunoprecipitated with KIF5A and KLC but not KIF3B. Together, our findings suggest that ERICH4 is capable of binding to KIF5A and that it may serve as an adaptor protein that links kinesin-1 with cargo.

Evaluation of Setting Time, Solubility, and Compressive Strength of Four Calcium Silicate-Based Cements (네 가지 규산 칼슘계 시멘트의 경화시간, 용해도, 압축강도 평가)

  • Yuji Jang;Yujin Kim;Junghwan Lee;Jongsoo Kim;Joonhaeng Lee;Mi Ran Han;Jongbin Kim;Jisun Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.2
    • /
    • pp.217-228
    • /
    • 2023
  • This study aimed to compare the physical properties of 4 kinds of calcium silicate-based cements (CSCs): 2 kinds of powder-liquid mix type (RetroMTA® [RTMX] and Endocem® MTA Zr [EZMX]) and 2 kinds of premixed type (Well-RootTMPT [WRPR] and Endocem® MTA premixed [ECPR]) CSCs, respectively. Further, we assessed the setting times, solubility values, and compressive strengths of the cements. The shortest setting time was observed for EZMX (123.33 ± 5.77 seconds), followed by RTMX (146.67 ± 5.77 seconds), ECPR (260.00 ± 17.32 seconds), and WRPR (460.00 ± 17.32 seconds), respectively. The highest solubility was observed for WRPR (9.01 ± 0.55%), followed by RTMX (2.17 ± 0.07%), EZMX (0.55 ± 0.03%), and ECPR (0.17 ± 0.03%). Furthermore, the highest compressive strength was observed for ECPR (76.67 ± 25.67 Mpa), followed by WRPR (38.39 ± 7.25 Mpa), RTMX (35.07 ± 5.34 Mpa), and EZMX (4.07 ± 0.60 Mpa). In conclusion, the premixed type CSCs (WRPR and ECPR) exhibited longer setting times compared to the powder-liquid mix type CSCs (EZMX and RTMX). The solubility test showed that ECPR had the lowest solubility while WRPR had the highest solubility, with a statistically significant difference between them (p < 0.0083). Additionally, the compressive strength test showed that ECPR had the highest compressive strength, while EZMX had the lowest compressive strength, also with a statistically significant difference between them (p < 0.0083). ECPR is a promising material as it is premixed, eliminating the need for mixing time, and it has also demonstrated improved solubility and compressive strength, making it a potentially favorable option for clinical use.

Brain-expressed X-linked 2 Binds to Kinesin Superfamily Protein 3A (Brain-expressed X-linked (Bex) 2와 heterotrimeric kinesin-2의 KIF3A와의 결합)

  • Kim, Mooseong;Jeong, Young Joo;Park, Sung Woo;Seo, Mi Kyoung;Kim, Sang Jin;Lee, Won Hee;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.189-195
    • /
    • 2022
  • Kinesin-2 comprises two subfamilies of the heterotrimeric or homodimeric motors found in mammalian cells. Heterotrimeric kinesin-2 consists of kinesin superfamily proteins (KIFs) 3A and 3B and kinesin-associated protein 3 (KAP3), which is a molecular motor protein that moves along microtubules. It plays diverse roles in cargo transport, including anterograde trafficking in cilia, and interacts with many different cargoes and proteins, but their binding proteins have not yet been fully identified. In this study, the yeast two-hybrid assay was used to identify the proteins that interact with the cargo-binding domain (CBD) of KIF3A, and an interaction between KIF3A and brain expressed X-linked 2 (Bex2) was found. Bex2 bound to the CBD-containing C-terminal tail region of KIF3A but did not interact with the same region of KIF3B or KIF5A (a motor protein of kinesin-1). KIF3A interacted with another isoform, Bex1, but did not interact with Bex3. In addition, glutathione S-transferase (GST) pull-downs showed that KIF3A specifically interacts with GST-Bex1 and GST-Bex2 but not with GST alone. When co-expressed in HEK-293T cells, Bex2 co-localized with KIF3A and co-immunoprecipitated with KIF3A and KIF3B but not KIF5B. In combination, these results suggest that Bex2 is capable of binding to heterotrimeric kinesin-2 and may serve as an adaptor protein that links heterotrimeric kinesin-2 with cargo.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.