DOI QR코드

DOI QR Code

네 가지 규산 칼슘계 시멘트의 경화시간, 용해도, 압축강도 평가

Evaluation of Setting Time, Solubility, and Compressive Strength of Four Calcium Silicate-Based Cements

  • 장유지 (단국대학교 치과대학 소아치과학교실) ;
  • 김유진 (단국대학교 치과대학 생체재료학교실) ;
  • 이정환 (단국대학교 치과대학 생체재료학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실) ;
  • 이준행 (단국대학교 치과대학 소아치과학교실) ;
  • 한미란 (단국대학교 치과대학 소아치과학교실) ;
  • 김종빈 (단국대학교 치과대학 소아치과학교실) ;
  • 신지선 (단국대학교 치과대학 소아치과학교실)
  • Yuji Jang (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Yujin Kim (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Junghwan Lee (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Jongsoo Kim (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Joonhaeng Lee (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Mi Ran Han (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Jongbin Kim (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Jisun Shin (Department of Pediatric Dentistry, College of Dentistry, Dankook University)
  • 투고 : 2023.03.18
  • 심사 : 2023.05.12
  • 발행 : 2023.05.31

초록

이 연구의 목적은 4가지 규산 칼슘계 시멘트를 대상으로 물리적 특성을 비교하고 평가하는 것이다. 2종의 분말-용액 혼합형 재료인 RetroMTA® [RTMX], Endocem® MTA Zr [EZMX] 그리고 2종의 기혼합형 재료인 Well-RootTMPT [WRPR], Endocem MTA® premixed [ECPR]를 사용하여 경화시간, 용해도 및 압축강도를 비교하였다. 가장 짧은 경화 시간은 EZMX (123.33 ± 5.77초)에서 관찰되었으며, RTMX (146.67 ± 5.77초), ECPR (260.00 ± 17.32초) 및 WRPR (460.00 ± 17.32초) 순으로 증가하였다. 가장 높은 용해도는 WRPR (9.01 ± 0.55%)에서 관찰되었으며, RTMX (2.17 ± 0.07%), EZMX(0.55 ± 0.03%) 및 ECPR (0.17 ± 0.03%) 순으로 감소하였다. 또한 압축강도는 ECPR(76.67 ± 25.67 Mpa)에서 가장 높게 나타났고, WRPR (38.39 ± 7.25 Mpa), RTMX(35.07 ± 5.34 Mpa), EZMX (4.07 ± 0.60 Mpa) 순으로 감소하였다. 결론적으로 기혼합형 규산 칼슘계 시멘트들은 분말-용액 혼합형에 비해 긴 경화 시간을 나타내었다. 용해도 실험 결과 가장 낮은 용해도를 보인 ECPR과 가장 높은 용해도를 보인 WRPR에서 통계적 차이가 관찰되었다(p < 0.0083). 압축강도 실험결과 가장 낮은 압축 강도를 보인 EZMX와 가장 높은 압축 강도를 보인 ECPR에서 통계적 차이가 관찰되었다(p < 0.0083). ECPR은 분말-용액 혼합형에 비해 긴 경화 시간을 나타내지만, 미리 혼합되어 있어 혼합 시간이 필요하지 않고 용해도와 압축 강도가 개선되었으므로 임상 사용 시 선택될 수 있는 유망한 재료이다.

This study aimed to compare the physical properties of 4 kinds of calcium silicate-based cements (CSCs): 2 kinds of powder-liquid mix type (RetroMTA® [RTMX] and Endocem® MTA Zr [EZMX]) and 2 kinds of premixed type (Well-RootTMPT [WRPR] and Endocem® MTA premixed [ECPR]) CSCs, respectively. Further, we assessed the setting times, solubility values, and compressive strengths of the cements. The shortest setting time was observed for EZMX (123.33 ± 5.77 seconds), followed by RTMX (146.67 ± 5.77 seconds), ECPR (260.00 ± 17.32 seconds), and WRPR (460.00 ± 17.32 seconds), respectively. The highest solubility was observed for WRPR (9.01 ± 0.55%), followed by RTMX (2.17 ± 0.07%), EZMX (0.55 ± 0.03%), and ECPR (0.17 ± 0.03%). Furthermore, the highest compressive strength was observed for ECPR (76.67 ± 25.67 Mpa), followed by WRPR (38.39 ± 7.25 Mpa), RTMX (35.07 ± 5.34 Mpa), and EZMX (4.07 ± 0.60 Mpa). In conclusion, the premixed type CSCs (WRPR and ECPR) exhibited longer setting times compared to the powder-liquid mix type CSCs (EZMX and RTMX). The solubility test showed that ECPR had the lowest solubility while WRPR had the highest solubility, with a statistically significant difference between them (p < 0.0083). Additionally, the compressive strength test showed that ECPR had the highest compressive strength, while EZMX had the lowest compressive strength, also with a statistically significant difference between them (p < 0.0083). ECPR is a promising material as it is premixed, eliminating the need for mixing time, and it has also demonstrated improved solubility and compressive strength, making it a potentially favorable option for clinical use.

키워드

과제정보

This work was supported by the Basic Science Research Program funded by the Ministry of Education (NRF-2022R1I1A1A01069606).

참고문헌

  1. Rodd HD, Waterhouse PJ, Fuks AB, Fayle SA, Moffat MA; British Society of Paediatric Dentistry : Pulp therapy for primary molars. Int J Paediatr Dent, 16(Suppl 1):15-23, 2006.  https://doi.org/10.1111/j.1365-263X.2006.00774.x
  2. Gizani S, Seremidi K, Stratigaki E, Tong HJ, Duggal M, Kloukos D : Vital pulp therapy in primary teeth with deep caries: an umbrella review. Pediatr Dent, 43:426-437, 2021. 
  3. Fuks AB : Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. J Endod, 34(7 Suppl):S18-S24, 2008.  https://doi.org/10.1016/j.joen.2008.02.031
  4. Sahin N, Saygili S, Akcay M : Clinical, radiographic, and histological evaluation of three different pulp-capping materials in indirect pulp treatment of primary teeth: a randomized clinical trial. Clin Oral Investig, 25:3945-3955, 2021.  https://doi.org/10.1007/s00784-020-03724-4
  5. Parirokh M, Torabinejad M : Mineral trioxide aggregate: a comprehensive literature review - Part III: Clinical applications, drawbacks, and mechanism of action. J Endod, 36:400-413, 2010.  https://doi.org/10.1016/j.joen.2009.09.009
  6. Hilton TJ, Ferracane JL, Mancl L; Northwest Practice-based Research Collaborative in Evidence-based Dentistry (NWP) : Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res, 92(7 Suppl):S16-S22, 2013.  https://doi.org/10.1177/0022034513484336
  7. American Academy of Pediatric Dentistry : Guideline on pulp therapy for primary and young permanent teeth. Pediatr Dent, 26(7 Suppl):115-119, 2004. 
  8. Koike T, Polan MAA, Izumikawa M, Saito T : Induction of reparative dentin formation on exposed dental pulp by dentin phosphophoryn/collagen composite. BioMed Res Int, 2014:745139, 2014. 
  9. Horsted P, Sandergaard B, Thylstrup A, El Attar K, Fejerskov O : A retrospective study of direct pulp capping with calcium hydroxide compounds. Endod Dent Traumatol, 1:29-34, 1985.  https://doi.org/10.1111/j.1600-9657.1985.tb00555.x
  10. Saidon J, He J, Zhu Q, Safavi K, Spangberg LS : Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 95:483-489, 2003.  https://doi.org/10.1067/moe.2003.20
  11. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR : Physical and chemical properties of a new root-end filling material. J Endod, 21:349-353, 1995.  https://doi.org/10.1016/S0099-2399(06)80967-2
  12. Yun J, You YO, Ahn E, Lee J, An SY : Cytotoxicity of various calcium silicate-based materials with stem cells from deciduous teeth. J Korean Acad Pediatr Dent, 46:85-92, 2019.  https://doi.org/10.5933/JKAPD.2019.46.1.85
  13. Kwon Y, Seok S, Lee S, Lim B : Comparison of intraosseous implantation between paste type mineral trioxide aggregates (MTA) and powder-liquid mix type MTA. Korean J Dent Mater, 44:229-246, 2017.  https://doi.org/10.14815/kjdm.2017.44.3.229
  14. Motwani N, Ikhar A, Nikhade P, Chandak M, Rathi S, Dugar M, Rajnekar R : Premixed bioceramics: A novel pulp capping agent. J Conserv Dent, 24:124-129, 2021.  https://doi.org/10.4103/JCD.JCD_202_20
  15. Che JL, Kim JH, Kim SM, Choi MK, Moon HJ, hwang MJ, Song HJ, Park YJ : Comparison of setting time, compressive strength, solubility, and pH of four kinds of MTA. Korean J Dent Mater, 43:61-72, 2016.  https://doi.org/10.14815/kjdm.2016.43.1.61
  16. Kogan P, He J, Glickman GN, Watanabe I : The effects of various additives on setting properties of MTA. J Endod, 32:569-572, 2006.  https://doi.org/10.1016/j.joen.2005.08.006
  17. Jeong YN, Yang SY, Park BJ, Park YJ, Hwang YC, Hwang IN, Oh WM : Physical and chemical properties of experimental mixture of mineral trioxide aggregate and glass ionomer cement. J Korean Acad Conserv Dent, 35:344-352, 2010.  https://doi.org/10.5395/JKACD.2010.35.5.344
  18. Lee BN, Hwang YC, Jang JH, Chang HS, Hwang IN, Yang SY, Park YJ, Son HH, Oh WM : Improvement of the properties of mineral trioxide aggregate by mixing with hydration accelerators. J Endod, 37:1433-1436, 2011.  https://doi.org/10.1016/j.joen.2011.06.013
  19. Abdalla MM, Lung CYK, Neelakantan P, Matinlinna JP : A novel, doped calcium silicate bioceramic synthesized by sol-gel method: Investigation of setting time and biological properties. J Biomed Mater Res B Appl Biomater, 108:56-66, 2020.  https://doi.org/10.1002/jbm.b.34365
  20. Saghiri MA, Orangi J, Asatourian A, Gutmann JL, Garcia-Godoy F, Lotfi M, Sheibani N : Calcium silicate-based cements and functional impacts of various constituents. Dent Mater J, 36:8-18, 2017.  https://doi.org/10.4012/dmj.2015-425
  21. Back S, Jang Y, Lee J, Lee J, Shin J, Kim J, Han M, Kim J : pH, Ion Release Capability, and Solubility Value of Premixed Mineral Trioxide Aggregates. J Korean Acad Pediatr Dent, 49:379-391, 2022.  https://doi.org/10.5933/JKAPD.2022.49.4.379
  22. Miled MB, Dakhli R, Maaned M, Hajjami H, Cherif M : Interest of Biodentine as pulp-capping materiel under CAD/CAM Ceramic Inlay. Sch J Med Case Rep, 9:207-210, 2021.  https://doi.org/10.36347/sjmcr.2021.v09i03.003
  23. International Organization for Standardization : ISO6876: Dental Root Canal Sealing Materials. 2001. 
  24. International Organization for Standardization : ISO 9917-1: Dentistry-Water-based cements-Part 1: Powder/liquid acid-base cements. 2007. 
  25. Kwon Y, Seok S, Lee S, Lim B : Comparison of physical properties between paste type mineral trioxide aggregates (MTA) and powder-liquid mix type MTA. Korean J Dent Mater, 44:11-20, 2017.  https://doi.org/10.14815/kjdm.2017.44.1.011
  26. Salem Milani A, Radmand F, Rahbani B, Hadilou M, Haji Abbas Oghli F, Salehnia F, Baseri M : Effect of Different Mixing Methods on Physicochemical Properties of Mineral Trioxide Aggregate: A Systematic Review. Int J Dent, 2023:5226095, 2023. 
  27. Ber BS, Hatton JF, Stewart GP : Chemical modification of ProRoot MTA to improve handling characteristics and decrease setting time. J Endod, 33:1231-1234, 2007.  https://doi.org/10.1016/j.joen.2007.06.012
  28. Kang TY, Choi JW, Seo KJ, Kim KM, Kwon JS : Physical, chemical, mechanical, and biological properties of four different commercial root-end filling materials: a comparative study. Materials, 14:1693, 2021. 
  29. Ha WN, Bentz DP, Kahler B, Walsh LJ : D90: the strongest contributor to setting time in mineral trioxide aggregate and Portland cement. J Endod, 41:1146-1150, 2015.  https://doi.org/10.1016/j.joen.2015.02.033
  30. Setbon HM, Devaux J, Iserentant A, Leloup G, Leprince JG : Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements. Dent Mater, 30:1291-1303, 2014.  https://doi.org/10.1016/j.dental.2014.09.005
  31. Koseoglu S, Pekbagr Yan KT, Kucukyilmaz E, Saglam M, Enhos S, Akgun A : Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement. Microsc Res Tech, 80:994-999, 2017.  https://doi.org/10.1002/jemt.22891
  32. Camilleri J : Mineral Trioxide Aggregate in Dentistry. Charmyun, Seoul, 132-133, 2016. 
  33. Kang EH, Yoo JS, Kim BH, Choi SW, Hong SH : Synthesis and hydration behavior of calcium zirconium aluminate (Ca7ZrAl6O18) cement. Cement Concrete Res, 56:106-111, 2014.  https://doi.org/10.1016/j.cemconres.2013.11.007
  34. Kang SH, Shin YS, Lee HS, Kim SO, Shin Y, Jung IY, Song JS : Color changes of teeth after treatment with various mineral trioxide aggregate-based materials: an ex vivo study. J Endod, 41:737-741, 2015.  https://doi.org/10.1016/j.joen.2015.01.019
  35. Park YJ, Kang JH, Seo H, Song H, Park YJ : Effect of compositional variation of dental MTA cements on setting time. Korean J Dent Mater, 48:99-118, 2021.  https://doi.org/10.14815/kjdm.2021.48.2.99
  36. Natu VP, Dubey N, Loke GCL, Tan TS, Ng WH, Yong CW, Cao T, Rosa V : Bioactivity, physical and chemical properties of MTA mixed with propylene glycol. J Appl Oral Sci, 23:405-411, 2015.  https://doi.org/10.1590/1678-775720150084
  37. Baba T, Tsujimoto Y : Examination of calcium silicate cements with low-viscosity methyl cellulose or hydroxypropyl cellulose additive. Biomed Res Int, 2016:4583854, 2016. 
  38. Kwon SH, Jeong HJ, Lee BN, Lee HS, Kim HJ, Kim SY, Kim DS, Jang JH : Effects of Various Mineral Trioxide Aggregates on Viability and Mineralization Potential of 3-Dimensional Cultured Dental Pulp Stem Cells. Appl Sci, 11:11381, 2021. 
  39. Shabahang S, Torabinejad M : Treatment of teeth with open apices using mineral trioxide aggregate. Pract Periodontics Aesthet Dent, 12:315-320, 2000. 
  40. Mente J, Geletneky B, Ohle M, Koch MJ, Ding PGF, Wolff D, Dreyhaupt J, Martin N, Staehle HJ, Pfefferle T : Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod, 36:806-813, 2010.  https://doi.org/10.1016/j.joen.2010.02.024
  41. Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO, Lambert G : Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth - a prospective study. Clin Oral Investig, 17:243-249, 2013.  https://doi.org/10.1007/s00784-012-0701-9
  42. Ko HJ : The myths and facts of MTA. J Korean Dent Assoc, 48:813-818, 2010. 
  43. Lee SJ, Cho OI, Yum JW, Park JK, Hur B, Kim HC : Physical properties of novel composite using Portland cement for retro-filling material. J Korean Acad Conserv Dent, 35:445-452, 2010.  https://doi.org/10.5395/JKACD.2010.35.6.445
  44. Gandolfi MG, Siboni F, Prati C : Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J, 45:571-579, 2012.  https://doi.org/10.1111/j.1365-2591.2012.02013.x
  45. Desai S, Chandler N : Calcium hydroxide-based root canal sealers: a review. J Endod, 35:475-480, 2009.  https://doi.org/10.1016/j.joen.2008.11.026
  46. Shahi S, Ghasemi N, Rahimi S, Yavari HR, Samiei M, Janani M, Bahari M : The Effect of Different Mixing Methods on the pH and Solubility of Mineral Trioxide Aggregate and Calcium-Enriched Mixture. Iran Endod J, 10:140-143, 2015. 
  47. Vaddi HK, Ho PCL, Chan YW, Chan SY : Oxide terpenes as human skin penetration enhancers of haloperidol from ethanol and propylene glycol and their modes of action on stratum corneum. Biol Pharm Bull, 26:220-228, 2003.  https://doi.org/10.1248/bpb.26.220
  48. Ashi T, Mancino D, Hardan L, Bourgi R, Zghal J, Macaluso V, Al-Ashkar S, Alkhouri S, Haikel Y, Kharouf N : Physicochemical and Antibacterial Properties of Bioactive Retrograde Filling Materials. Bioengineering, 9:624, 2022. 
  49. Colombo M, Poggio C, Dagna A, Meravini MV, Riva P, Trovati F, Pietrocola G : Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent, 10:E120-E126, 2018.  https://doi.org/10.4317/jced.54548
  50. Marciano MA, Duarte MAH, Camilleri J : Calcium silicate-based sealers: assessment of physicochemical properties, porosity and hydration. Dent Mater, 32:E30-E40, 2016.  https://doi.org/10.1016/j.dental.2015.11.008
  51. Han L, Kodama S, Okiji T : Evaluation of calcium-releasing and apatite-forming abilities of fast-setting calcium silicate-based endodontic materials. Int Endod J, 48:124-130, 2015.  https://doi.org/10.1111/iej.12290
  52. Kang TY, Choi JW, Kim KM, Kwon JS : Mechanical and physico-chemical properties of premixed-MTA in contact with three different types of solutions. Korean J Dent Mater, 48:281-292, 2021.  https://doi.org/10.14815/kjdm.2021.48.4.281
  53. Choi Y, Park SJ, Lee SH, Hwang YC, Yu MK, Min KS : Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J Endod, 39:467-472, 2013.  https://doi.org/10.1016/j.joen.2012.11.023
  54. Fathi U : Strength Evaluation of Different Dental Pulp Capping Materials. J Global Sci Res, 7:2464-2467, 2022. 
  55. Al-Sherbiny IM, Farid MH, Abu-Seida AM, Motawea IT, Bastawy HA : Chemico-physical and mechanical evaluation of three calcium silicate-based pulp capping materials. Saudi Dent J, 33:207-214, 2021.  https://doi.org/10.1016/j.sdentj.2020.02.001
  56. Jang E, Lee J, Nam S, Kwon T, Kim H : Comparison of Microleakage and Compressive Strength of Different Base Materials. J Korean Acad Pediatr Dent, 48:168-175, 2021.  https://doi.org/10.5933/JKAPD.2021.48.2.168
  57. Kayahan MB, Nekoofar MH, McCann A, Sunay H, Kaptan RF, Meraji N, Dummer PM : Effect of acid etching procedures on the compressive strength of 4 calcium silicate-based endodontic cements. J Endod, 39:1646-1648, 2013.  https://doi.org/10.1016/j.joen.2013.09.008
  58. Oral Health. Increasing use of bioceramics in endodontics: A narrative review. Available from URL: https://www.oralhealthgroup.com/features/increasing-use-of-bioceramics-in-endodontics-a-narrative-review (Accessed on May 17, 2023). 
  59. Dawood AE, Parashos P, Wong RH, Reynolds EC, Manton DJ : Calcium silicate-based cements: composition, properties, and clinical applications. J Investig Clin Dent, 8:E12195, 2017.