• Title/Summary/Keyword: Clinical laboratory science techniques

Search Result 72, Processing Time 0.025 seconds

Hemorheological measurements in experimental animals: further consideration of cell size - pore size relations in filtrometry

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.155-160
    • /
    • 2009
  • Micropore filtration of dilute red blood cell (RBC) suspensions is a widely known method for determining red blood cell deformability. Use of this method for cells from various laboratory animal species does require considering the effects of the cell size to pore size ratio and of suspension hematocrit. In general, previous animal studies have utilized 5% hematocrit suspensions and five micron pores, and thus conditions similar to human clinical laboratory practice. However, when used for repeated sampling from small laboratory animals or for parallel multiple samples from different sites in large laboratory animals, the volume of blood sampled and hence the hematocrit of the test suspension may be limited. Our results indicate that hematocrit levels yielding stable values of RBC pore transit time are pore size and species specific: three micron pores = $2{\sim}5%$ for dog and $3{\sim}5%$ for rat; five micron pores $3{\sim}5%$ for dog and $1{\sim}5%$ for rat. An analytical approach using a common expression for calculating transit time is useful for determining the sensitivity of this time to hematocrit alterations and hence to indicate hematocrit levels that may be problematic.

Application of Diagnostic Laboratory Tests in the Field of Oral Medicine: A Narrative Review

  • Ji Woon, Park;Yeong-Gwan, Im
    • Journal of Korean Dental Science
    • /
    • v.15 no.2
    • /
    • pp.101-111
    • /
    • 2022
  • The purpose of laboratory tests in the field of oral medicine can be divided into two categories: (1) medical evaluation of patients with systemic diseases that are planning to receive dental care and (2) diagnosis of patients with certain oral diseases. First, laboratory tests are commonly used to evaluate patients with systemic diseases who need dental management. A combination of multiple tests is usually prescribed as a test panel to diagnose and assess a specific disease. Test panels closely related to oral medicine include those for rheumatoid arthritis, connective tissue disease/lupus, liver function, thyroid screening, anemia, and bleeding disorders. Second, laboratory tests are used as auxiliary diagnostic methods for certain oral diseases. They often provide crucial diagnostic information for infectious diseases caused by bacteria, fungi, and viruses that are associated with pathology in the oral and maxillofacial regions. Laboratory tests for infectious diseases are composed of growth-dependent methods, immunologic assays, and molecular biology. As the field develops, further application of laboratory tests, including synovial fluid analysis in temporomandibular joint disorders, salivary diagnostics, and hematologic biomarkers associated with temporomandibular disorders and orofacial pain conditions, is currently under scrutiny for their reliability as diagnostic tools.

Application of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry (Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry의 활용)

  • Pil Seung KWON
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.244-252
    • /
    • 2023
  • The timeliness and accuracy of test results are crucial factors for clinicians to decide and promptly administer effective and targeted antimicrobial therapy, especially in life-threatening infections or when vital organs and functions, such as sight, are at risk. Further research is needed to refine and optimize matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based assays to obtain accurate and reliable results in the shortest time possible. MALDI-TOF MS-based bacterial identification focuses primarily on techniques for isolating and purifying pathogens from clinical samples, the expansion of spectral libraries, and the upgrading of software. As technology advances, many MALDI-based microbial identification databases and systems have been licensed and put into clinical use. Nevertheless, it is still necessary to develop MALDI-TOF MS-based antimicrobial-resistance analysis for comprehensive clinical microbiology characterization. The important applications of MALDI-TOF MS in clinical research include specific application categories, common analytes, main methods, limitations, and solutions. In order to utilize clinical microbiology laboratories, it is essential to secure expertise through education and training of clinical laboratory scientists, and database construction and experience must be maximized. In the future, MALDI-TOF mass spectrometry is expected to be applied in various fields through the use of more powerful databases.

Diagnostic Method for the Detection of JC Polyomavirus Using Loop-mediated Isothermal Amplification (등온증폭법을 이용한 고감도 JC polyomaviruses 진단법 개발)

  • Cho, Kyu Bong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.414-419
    • /
    • 2019
  • JC polyomavirus (JCPyV) is a human pathogenic virus belonging to the family Polyomaviridae, a viral group containing dsDNA nucleic acid. A recent recommendation is to apply the presence of JCPyV as a fecal indicator for water contamination in environments like sewage, and techniques to monitor JCPyV in water are being proposed. To date, the conventional PCR system has been applied as a diagnostic method for detecting JCPyV. There is a need for a more rapid and sensitive JCPyV diagnostic detection method in clinical and environmental samples. In this study, we developed a loop-mediated isothermal amplification (LAMP) primer set for the detection of JCPyV. Our results indicate that the LAMP method using a specific primer set shows about 10-fold higher detection sensitivity than the conventional PCR system. The effectiveness of the LAMP method developed in this study has been validated by PCR product digestion using the HaeIII restriction enzyme. We, therefore, propose that the LAMP method using a specific primer set can be applied as a rapid and sensitive detection method for monitoring JCPyV in clinical and environmental samples.

Real-time Nucleic Acid Sequence Based Amplification (Real-time NASBA) for Detection of Norovirus

  • Lee, In-Soo;Choi, Dong-Hyuk;Lim, Jae-Won;Cho, Yoon-Jung;Jeong, Hye-Sook;Cheon, Doo-Sung;Bang, Hye-Eun;Jin, Hyun-Woo;Choi, Yeon-Im;Park, Sang-Jung;Kim, Sung-hyun;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 2011
  • Noroviruses (noroV) are the major cause of nonbacterial gastroenteritis in humans worldwide. Since noroV cannot yet be cultured in vitro and their diagnosis by electron microscopy requires at least $10^6$ viral particles/g of stool a variety of molecular detection techniques represent an important step towards the detection of noroV. In the present study, we have applied real-time nucleic acid sequence-based amplification (real-time NASBA) for simultaneous detection of NoroV genogroup I (GI) and genogroup II (GII) using standard viral RNA. For real-time NASBA assay which can detected noroV GI and GII, a selective region of the genes encoding the capsid protein was used to design primers and genotype-specific molecular beacon probes. The specificity of the real-time NASBA using newly designed primers and probes were confirmed using standard viral RNA of noroV GI and GII. To determine the sensitivity of this assay, serial 10-fold dilutions of standard viral RNA of noroV GI and GII were used for reverse transcription polymerase chain reaction (RT-PCR) and real-time NASBA. The results showed that while agarose gel electrophoresis could detect RT-PCR products with 10 pg of standard viral RNA, the real-time NASBA assay could detect 100 fg of standard viral RNA. These results suggested that the real-time NASBA assay has much higher sensitivity than conventional RT-PCR assay. This assay was expected that might detect the viral RNA in the specimens which could have been false negative by RT-PCR. There were needed to perform real-time NASBA with clinical specimens for evaluating accurate sensitivity and specificity of this assay.

A Review of the Characteristics of Early Apparatus and Methods for Hemoglobin Estimation (Hemoglobin 평가를 위한 초기 기구의 특성 및 측정법 고찰)

  • Kwon, Young-Il
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.401-410
    • /
    • 2016
  • Since the late 19th century, scientific logic and techniques have been used extensively in the field of clinical pathology, including many laboratory tests utilizing various apparatuses and instruments. Among the techniques to measure hemoglobin, the visual color comparison method was most popular around this time; the specific gravity method and gasometric method were not widely adopted. Instruments that use the visual color comparison method include Gowers' hemoglobinometer, von Fleischl's hemoglobinometer, Dare's hemoglobinometer, Oliver's hemoglobinometer, Haden-Hausser hemoglobinometer, and Spencer Hb meter. Initially, the visual color comparison methods were used to diluate and hemolyze blood with distilled water and then to measure its color. Later, these methods were further developed to measure hemoglobin without dilution, and improved with the formation of acid or alkaline hematin ensuring the stability of color development. Hammerschlag's method as well as the Schmaltz and Peiper's methods were based on specific gravity measurement, but they were not widely used. The gasometric method used the Van Slyke gasometer, indirectly measuring the hemoglobin concentration. This method provides the most accurate results. This survey examined the characteristics and limitations of hemoglobinometers and methods used to measure hemoglobin from the late 19th century to the early-and mid-20th century. Moreover, this study aims to improve the understanding and applicability of the current methods and emerging technologies used in measuring hemoglobin. It is also expected that this investigation is the starting point to promote awareness of the need to organize historical data for a variety of historical relics of the diagnostic laboratory tests.

Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer

  • Jihyun Kim;Jaewang Lee;Jin Hyun Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.225-238
    • /
    • 2022
  • The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.

Current Status of the Research and Development of Bispecific Antibodies

  • Kwon, Sun-Il
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.136-148
    • /
    • 2020
  • A bispecific antibody (BsAb) is an artificial protein containing two kinds of specific antigen binding sites. BsAb can connect target cells to functional cells or molecules, and thus stimulate a directed immune response. Last several decades a wide variety of bsAb formats and production technologies have been developed. BsAbs are constructed either chemically or biologically, exploiting techniques like cell fusion and recombinant DNA technologies. There are over 100 different formats of bsAb so far developed, but they could be classified into the two main categories such as Fc-based (with a Fc region) bsAbs and fragment-based (without a Fc region) bsAbs. BsAb has a broad application prospect in tumor immunotherapy and drug delivery. Here, we present a brief introduction to the structure of antibody, pharmacological mechanisms of antibodies and the trend in the production technologies of therapeutic antibodies. In addition, we address a review on the current status of various bsAb format development and their production technologies together with global situation in the clinical studies of bsAb.

Distribution Analysis of Candida albicans according to Sex and Age in Clinical Specimen Testing for Sexually Transmitted Diseases

  • Jae Eun Choi;Jae-Sik Jeon;Jae Kyung Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.123-126
    • /
    • 2023
  • The prevalence of candidiasis, a contagious disease with high morbidity and mortality, has sharply increased globally over the last two decades. Candida albicans can cause serious infections in patients with weak immunity and in recipients of prolonged antibiotic treatment. Consequently, rapid and accurate identification of species can play an important role in the treatment of candidiasis. Here, we investigated the positive rate and infection trend of C. albicans according to age, specimen type, and sex using multiplex real-time polymerase chain reaction-based testing of samples collected for the diagnosis of sexually transmitted diseases in Korea between 2018 and 2020. When the type of specimen collected was a swab, the positive rate of C. albicans was higher among younger women, and tended to decrease with age. Analysis of swab samples revealed higher positive rates than urinalysis. The reduction trend in positive rates by age was comparable between the overall samples and urine specimens. Among male patients, the positive rate did not differ substantially across the various types of specimens collected. Previous studies have shown a higher prevalence of non-albicans Candida species than C. albicans in clinical specimens, and exclusion of the former from our analysis may be a limitation of this study. However, our findings contribute significantly to the literature because globally, there is a paucity of epidemiological studies using molecular techniques to detect C. albicans in sexually transmitted disease test samples.

Evaluation of the Method for Total Homocysteine in Plasma Using LC-MS/MS (LC-MS/MS를 이용한 Homocysteine 측정과 그 유용성 평가)

  • Jun, Sun-Hee;Lim, Mi-Suk;Jung, Yong-Sun;Song, Jung-Han
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.22-26
    • /
    • 2005
  • Total homocysteine is now considered a risk factor for cardiovascular diseases. I increased interest has led to a multitude of studies requiring the determination of total homocysteine in conjunction with other factor. There are various methods for measuring total homocysteine, including HPLC, FPIA, GC-MS and LC-MS/MS. The most recent method for measuring total homocysteine uses a deuterium-labelled internal standard and tandem mass spectrometry. This development requires no derivatization and therefore leads to an increase in sample throughput compared to other techniques. We have evaluated the method for homocysteine by the LC-MS/MS method, and the correlation between the FPIA method and the LC-MS/MS method. The standard curve (0, 5, 10, 20, 50, 100 uM) was linear over the range examined (up to 100 uM). The lower limit of quantification (CV < 10 %) was 0.5 uM/L and the lower limit of detection (S/N >3) was 0.1 uM/L. Intra-assay variation and inter-assay variation were both <6 %. The comparision study for homocysteine concentration showed good correlation (r=0.9684) between the FPIA method and LC-MS/MS methods. Our conclusion is that the method showed relatively good precision, and was rapid and accurate.

  • PDF